全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于交替方向乘子法的广义交互 LASSO 模型用于肝脏疾病分类

DOI: doi:10.7507/1001-5515.201508026

Keywords: 肝脏疾病分类, 特征交互, 最小绝对收缩和选择算子, 逻辑斯特回归, 交替方向乘子法

Full-Text   Cite this paper   Add to My Lib

Abstract:

肝脏疾病特征及交互特征对于肝脏疾病的分类具有重要意义,本文在交互最小绝对收缩和选择算子(LASSO)模型的基础上,研究了广义交互 LASSO 模型并与其他可用于肝脏疾病分类的方法比较。首先,本文建立了广义交互逻辑斯特(logistic)分类模型,在模型参数中添加 LASSO 罚函数,然后将模型参数通过交替方向乘子法(ADMM)求解,得到模型系数的稀疏解。最后将测试样本代入模型,按照最大概率进行分类结果统计。通过将本文方法应用在肝脏失调数据集和印度肝病数据集的数据实验结果表明,交互特征的模型系数不为零,这说明交互特征对分类存在贡献。最终结果表明,本文提出的广义交互 LASSO 方法的正确率要优于交互 LASSO 方法,也优于传统模式识别方法,可将广义交互 LASSO 方法推广应用到其他疾病的分类问题上

References

[1]  1. Bien J, Taylor J, Tibshirani R. A Lasso for Hierarchical Interactions. Ann Stat, 2013, 41(3): 1111-1141.
[2]  2. 王金甲, 卢阳. 特征交互 LASSO 用于肝病分类. 生物医学工程学杂志, 2015(6): 1227-1232.
[3]  3. Li Han, Liu Yashu, Gong Pinghua, et al. Hierarchical interactions model for predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) conversion. PLoS One, 2014, 9(1): e82450.
[4]  4. Liu Yashu, Wang Jie, Ye Jieping. An efficient algorithm for weak hierarchical lasso. ACM Trans Knowl Discov Data, 2016, 10(3): 1-24.
[5]  5. Lim M, Hastie T. Learning interactions via hierarchical group-lasso regularization. J Comput Graph Stat, 2016, 24(3): 627-654.
[6]  6. Haris A, Witten D, Simon N. Convex modeling of interactions with strong heredity. J Comput Graph Stat, 2016, 25(4): 981-1004.
[7]  7. Zhao Junlong, Leng Chenlei. An analysis of penalized interaction models. Bernoulli, 2016, 22(3): 1937-1961.
[8]  8. Shah R D. Modelling interactions in high-dimensional data with backtracking. Journal of Machine Learning Research, 2016, 17(13): 1-31.
[9]  9. Pham D T, Dimov S S, Salem Z. Technique for selecting examples in inductive learning//European symposium on intelligent techniques. Aachen, Germany, 2000: 119–127.
[10]  10. Cheung N. Machine learning techniques for medical analysis. Australia: The University of Queensland, 2001.
[11]  11. Lee Y J, Mangasarian O L. SSVM: A smooth support vector machine for classification. Comput Optim Appl, 2001, 20(1): 5-22.
[12]  12. Polat K, Sahan S, Kodaz H, et al. Breast Cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism. Expert Syst Appl, 2007, 32(1): 172-183.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133