3. Li Han, Liu Yashu, Gong Pinghua, et al. Hierarchical interactions model for predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) conversion. PLoS One, 2014, 9(1): e82450.
[4]
4. Liu Yashu, Wang Jie, Ye Jieping. An efficient algorithm for weak hierarchical lasso. ACM Trans Knowl Discov Data, 2016, 10(3): 1-24.
[5]
5. Lim M, Hastie T. Learning interactions via hierarchical group-lasso regularization. J Comput Graph Stat, 2016, 24(3): 627-654.
[6]
6. Haris A, Witten D, Simon N. Convex modeling of interactions with strong heredity. J Comput Graph Stat, 2016, 25(4): 981-1004.
[7]
7. Zhao Junlong, Leng Chenlei. An analysis of penalized interaction models. Bernoulli, 2016, 22(3): 1937-1961.
[8]
8. Shah R D. Modelling interactions in high-dimensional data with backtracking. Journal of Machine Learning Research, 2016, 17(13): 1-31.
[9]
9. Pham D T, Dimov S S, Salem Z. Technique for selecting examples in inductive learning//European symposium on intelligent techniques. Aachen, Germany, 2000: 119–127.
[10]
10. Cheung N. Machine learning techniques for medical analysis. Australia: The University of Queensland, 2001.
[11]
11. Lee Y J, Mangasarian O L. SSVM: A smooth support vector machine for classification. Comput Optim Appl, 2001, 20(1): 5-22.
[12]
12. Polat K, Sahan S, Kodaz H, et al. Breast Cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism. Expert Syst Appl, 2007, 32(1): 172-183.