全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

血管脉动对骨单元内液体流动行为的影响

DOI: doi:10.7507/1001-5515.201607046

Keywords: 骨单元, 血管脉动, 间隙流, 多孔弹性

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨组织内部存在两大类液体,一类是血液,一类是间隙流。骨细胞新陈代谢主要依赖于间隙流微环境。在骨组织的微观结构下,骨单元壁中液体的渗流行为是研究的热点。本文的主要目的是考察中央哈弗管的血管脉动对骨单元壁中的间隙流流动行为的影响。本文利用 COMSOL Multiphysics 软件分别建立了中空的和考虑哈弗管中血管脉动的骨单元多孔弹性力学有限元模型,并对比了轴向载荷下两种模型中骨单元壁中的液体渗流行为。结果表明:当考虑哈弗管中的血管脉动时,骨单元壁中液体的压力会明显增大,而流速几乎没有影响。具体地,骨单元孔隙组织液的压力幅值随着血压脉动幅值的增大而增大,受脉动频率的变化影响不大,而血压脉动幅值及频率对骨单元孔隙组织液的流速基本没有影响。该有限元模型可用来进一步研究非轴对称载荷及微裂缝等复杂应力状态下骨单元的多孔弹性力学行为,并为研究骨的力传导及力-电传导机制提供新方法

References

[1]  9. Wu Xiaogang, Wang Yanqin, Wu Xiaohong, et al. Effects of microcracks on the poroelastic behaviors of a single osteon. Science China Physics, Mechanics & Astronomy, 2014, 57(11): 2161-2167.
[2]  10. Pfenniger A, Obrist D, Stahel A, et al. Energy harvesting through arterial wall deformation: design considerations for a magneto-hydrodynamic generator. Med Biol Eng Comput, 2013, 51(7): 741-755.
[3]  11. Pfenniger A, Stahel A, Koch V M, et al. Energy harvesting through arterial wall deformation: A FEM approach to fluid-structure interactions and magneto-hydrodynamics. Appl Math Model, 2014, 38(13): 3325-3338.
[4]  12. Wu Xiaogang, Chen Weiyi, Wang Danxia. Mathematical osteon model for examining poroelastic behaviors. Applied Mathematics and Mechanics-English Edition, 2013, 34(4): 405-416.
[5]  13. Nguyen V H, Lemaire T, Naili S. Anisotropic poroelastic hollow cylinders with damaged periphery under harmonic axial loading: relevance to bone remodelling. Multidiscipline Modeling in Materials and Structures, 2009, 5(3): 205-222.
[6]  14. Nguyen V H, Lemaire T, Naili S. Influence of interstitial bone microcracks on strain-induced fluid flow. Biomech Model Mechanobiol, 2011, 10(6): 963-972.
[7]  18. Cowin S C, Cardoso L. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech, 2015, 48(5, SI): 842-854.
[8]  19. Nguyen V H, Lemaire T, Naili S. Poroelastic behaviour of cortical bone under harmonic axial loading: A finite element study at the osteonal scale. Med Eng Phys, 2010, 32(4): 384-390.
[9]  20. Wu Xiaogang, Yu Weilun, Wang Zhaowei, et al. Effects of the Haversian fluid pressure on the canalicular fluid flow rates and shear stress. Basic & Clinical Pharmacology & Toxicology, 2015, 117(Suppl 3): 1.
[10]  21. Wu Xiaogang, Yu Weilun, Cen Haipeng, et al. Hierarchical model for strain generalized streaming potential induced by the canalicular fluid flow of an osteon. Acta Mech Sinica, 2015, 31(1): 112-121.
[11]  5. Wu Xiaogang, Chen Weiyi. A hollow osteon model for examining its poroelastic behaviors: Mathematically modeling an osteon with different boundary cases. European Journal of Mechanics A/Solids, 2013, 40: 34-49.
[12]  7. Wu Xiaogang, Chen Weiyi. Poroelastic behaviors of the osteon: A comparison of two theoretical osteon models. Acta Mech Sinica, 2013, 29(4): 612-621.
[13]  8. Cen Haipeng, Wu Xiaogang, Yu Weilun, et al. Effects of the microcrack shape, size and direction on the poroelastic behaviors of a single osteon: a finite element study. Acta of Bioengineering and Biomechanics, 2016, 18(1): 3-10.
[14]  1. Cowin S C. Bone poroelasticity. J Biomech, 1999, 32(3): 217-238.
[15]  2. Biot M A. General theory of three-dimensional consolidation. J Appl Phys, 1941, 12(2): 155-164.
[16]  3. Zhang D J, Weinbaum S, Cowin S C. On the calculation of bone pore water pressure due to mechanical loading. Int J Solids Struct, 1998, 35(34/35): 4981-4997.
[17]  4. Rémond A, Naili S. Transverse isotropic poroelastic osteon model under cyclic loading. Mech Res Commun, 2005, 32(6): 645-651.
[18]  6. Wu Xiaogang, Chen Weiyi, Gao Zhipeng, et al. The effects of Haversian fluid pressure and harmonic axial loading on the poroelastic behaviors of a single osteon. Science China Physics, Mechanics and Astronomy, 2012, 55(9): 1646-1656.
[19]  16. Mak A F T, Huang D T, Zhang J D, et al. Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity. J Biomech, 1997, 30(1): 11-18.
[20]  17. You L, Cowin S C, Schaffler M B, et al. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J Biomech, 2001, 34(11): 1375-1386.
[21]  15. Remond A, Naili S, Lemaire T. Interstitial fluid flow in the osteon with spatial gradients of mechanical properties: a finite element study. Biomech Model Mechanobiol, 2008, 7(6): 487-495.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133