全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

小窝蛋白-1 与线粒体及癌症能量代谢——癌症治疗的新靶点

DOI: doi:10.7507/1001-5515.201703037

Keywords: 小窝蛋白-1, 能量代谢, 线粒体, 活性氧自由基, 恶性表型

Full-Text   Cite this paper   Add to My Lib

Abstract:

癌细胞快速增殖并转移,会消耗大量能量和营养物质,因而发展靶向于癌细胞独特能量代谢方式的治疗手段有望实现癌症的有效治愈。近年来多篇文献报道了细胞膜上特化小窝结构的功能蛋白小窝蛋白-1(Cav-1)对癌细胞能量代谢具有关键调节作用,并指出肿瘤基质细胞中的 Cav-1 低表达可诱导癌细胞恶性表型。本文综述了近期关于 Cav-1 与线粒体功能、细胞能量代谢之间相互作用的研究进展,并指出 Cav-1 与线粒体之间的相互作用可能是癌症能量代谢转换所引起的恶性表型的基础

References

[1]  7. Bartholomew J N, Galbiati F. Mapping of oxidative stress response elements of the caveolin-1 promoter. Methods Mol Biol, 2010, 594: 409-423.
[2]  10. Eiró N, Fernandez-Garcia B, Vázquez J, et al. A phenotype from tumor stroma based on the expression of metalloproteases and their inhibitors, associated with prognosis in breast cancer. Oncoimmunology, 2015, 4(7): e992222.
[3]  13. Zhu Xue, Wang Ke, Zhang Kai, et al. Galectin-1 knockdown in carcinoma-associated fibroblasts inhibits migration and invasion of human MDA-MB-231 breast cancer cells by modulating MMP-9 expression. Acta Biochim Biophys Sin (Shanghai), 2016, 48(5): 462-467.
[4]  14. Yu Y, Xiao C H, Tan L D, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer, 2014, 110(3): 724-732.
[5]  15. Katanov C, Lerrer S, Liubomirski Y, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-α and the NF-κB pathway. Stem Cell Res Ther, 2015, 6: 87.
[6]  16. Kubo N, Araki K, Kuwano H, et al. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol, 2016, 22(30): 6841-6850.
[7]  20. Somasundaram V, Nadhan R, Hemalatha S K, et al. Nitric oxide and reactive oxygen species: Clues to target oxidative damage repair defective breast cancers. Crit Rev Oncol Hematol, 2016, 101: 184-192.
[8]  22. Morais-Santos F, Granja S, Miranda-Gon?alves V, et al. Targeting lactate transport suppresses in <italic>vivo</italic> breast tumour growth. Oncotarget, 2015, 6(22): 19177-19189.
[9]  25. Nwosu Z C, Ebert M P, Dooley S, et al. Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Mol Cancer, 2016, 15(1): 71.
[10]  2. Cheng J P, Nichols B J. Caveolae: one function or many?. Trends Cell Biol, 2016, 26(3): 177-189.
[11]  17. Folgueira M A, Maistro S, Katayama M L, et al. Markers of breast cancer stromal fibroblasts in the primary tumour site associated with lymph node metastasis: a systematic review including our case series. Biosci Rep, 2013, 33(6). pii: e00085..
[12]  18. Shan Tao, Chen Shuo, Chen Xi, et al. Prometastatic mechanisms of CAF-mediated EMT regulation in pancreatic cancer cells. Int J Oncol, 2017, 50(1): 121-128.
[13]  19. Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 2009, 8(23): 3984-4001.
[14]  21. Shan Tao, Chen Shuo, Chen Xi, et al. Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncol Rep, 2017, 37(4): 1971-1979.
[15]  23. Martel F, Guedes M, Keating E. Effect of polyphenols on glucose and lactate transport by breast cancer cells. Breast Cancer Res Treat, 2016, 157(1): 1-11.
[16]  1. Parton R G, Collins B M. Unraveling the architecture of caveolae. Proc Natl Acad Sci U S A, 2016, 113(50): 14170-14172.
[17]  3. Fridolfsson H N, Roth D M, Insel P A, et al. Regulation of intracellular signaling and function by caveolin. FASEB J, 2014, 28(9): 3823-3831.
[18]  4. Caravia L, Dudau M, Gherghiceanu M, et al. Could caveolae be acting as warnings of mitochondrial ageing? Mech Ageing Dev, 2015, 146-148: 81-87.
[19]  5. Shiroto T, Romero N, Sugiyama T, et al. Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium. PLoS One, 2014, 9(2): e87871.
[20]  6. Schilling J M, Patel H H. Non-canonical roles for caveolin in regulation of membrane repair and mitochondria: implications for stress adaptation with age. J Physiol, 2016, 594(16): 4581-4589.
[21]  8. Coelho-Santos V, Socodato R, Portugal C, et al. Methylphenidate-triggered ROS generation promotes caveolae-mediated transcytosis via Rac1 signaling and c-Src-dependent caveolin-1 phosphory-lation in human brain endothelial cells. Cell Mol Life Sci, 2016, 73(24): 4701-4716.
[22]  11. Kim H M, Jung W H, Koo J S. Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: an immunohistochemical analysis. J Transl Med, 2015, 13: 222.
[23]  9. Volonte D, Galbiati F. Polymerase Ⅰ and transcript release factor (PTRF)/cavin-1 is a novel regulator of stress-induced premature senescence. J Biol Chem, 2011, 286(33): 28657-28661.
[24]  12. Park C K, Jung W H, Koo J S. Expression of cancer-associated fibroblast-related proteins differs between invasive lobular carcinoma and invasive ductal carcinoma. Breast Cancer Res Treat, 2016, 159(1): 55-69.
[25]  24. 赵朋月, 刁路明, 陈洪雷. 基质窖蛋白-1 和肿瘤能量代谢的研究进展. 中华病理学杂志, 2012, 41(7): 498-5000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133