5. Petrantonakis P C, Hadjileontiadis L J. Emotion recognition from EEG using higher order crossings. IEEE Trans Inf Technol Biomed, 2010, 14(2): 186-197.
[5]
7. 李立. 基于脑电信号样本熵的情感识别. 太原: 太原理工大学, 2014.
[6]
8. 谢康. 情绪音乐的脑电识别算法. 成都: 电子科技大学, 2013.
[7]
9. 张迪. 情绪脑电特征识别与跨模式分析. 天津: 天津大学, 2013.
[8]
10. Koelstra S, Muhl C, Soleymani M, et al. DEAP: A database for emotion analysis using physiological signals. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31.
3. Lin Yuanpin, Wang Chihong, Jung T P, et al. EEG-based emotion recognition in music listening. IEEE Trans Biomed Eng, 2010, 57(7): 1798-1806.
[12]
4. Duan Ruonan, Zhu Jiayi, Lu Baoliang. Differential entropy feature for EEG-based emotion classification//6th International IEEE/EMBS Conference on Neural Engineering (NER). SanDiego, California, USA: IEEE, 2013: 81-84.
[13]
6. Murugappan M, Nagarajan R, Yaacob S. Appraising human emotions using Time Frequency Analysis based EEG alpha band features//Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA). Kuala Lumpur, Malaysia, Malaysia: IEEE, 2009: 70-75.
27. Wang Xiaowei, Nie Dan, Lu Baoliang. Emotional state classification from EEG data using machine learning approach. Neurocomputing, 2014, 129(SI): 94-106.
26. Murugappan M, Nagarajan R, Yaacob S. Comparison of different wavelet features from EEG signals for classifying human emotions//IEEE Symposium on Industrial Electronics & Applications, 2009. ISIEA 2009. Kuala Lumpur, Malaysia: IEEE, 2009: 836-841.
[28]
28. Heraz A, Razaki R, Frasson C. Using machine leaming to predict learner emotional state from brainwaves// Seventh IEEE International Conference on Advanced Learning Technologies, 2007. ICALT 2007. Niigata, Japan: IEEE, 2007: 853-857.