全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

肌肉生物仿真度对六岁儿童胸部碰撞生物力学响应的影响

DOI: doi:10.7507/1001-5515.201606045

Keywords: 儿童胸部有限元模型, 胸部碰撞, 肌肉生物仿真度, 生物力学响应, 内脏损伤

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于可用于实验的儿童尸体的缺乏,采用具有较高生物仿真度的胸部有限元模型是研究儿童胸部损伤机理的重要手段。在已验证有效性的 6 岁儿童胸部有限元模型基础上构建了等效肌肉模型和具有真实几何形状的肌肉模型,通过重构儿童胸部正碰尸体实验分析肌肉生物仿真度对胸部损伤的影响。对比实验结果表明,等效肌肉模型的胸部接触力、胸部最大压缩量和肋骨最大范梅塞斯应力稍大于真实肌肉模型;心脏和肺的最大主应变都略小于真实肌肉模型;真实肌肉模型曲线与尸体实验通道的相关性要大于等效肌肉模型。通过以上对比,本文研究结果认为具有真实几何形状肌肉的儿童胸部有限元模型应该能更准确地反映胸部受到碰撞时的生物力学响应

References

[1]  1. ?周蓉, 熊鸿燕, 张学兵, 等. 儿童意外伤害的临床流行病学特征分析. 中华创伤杂志, 2011, 27(5): 466-471.
[2]  2. 刘涛, 梁伟玲, 陈铭伍, 等. 儿童胸部损伤危险因素分析. 实用医学杂志, 2014, 30(19): 3153-3155.
[3]  3. OuYang J, Zhao Weidong, Xu Yongqing, et al. Thoracic impact testing of pediatric cadaveric subjects. Journal of Trauma-Injury Infection and Critical Care, 2006, 61(6): 1492-1500.
[4]  4. Kent R, Lopezvaldes F J, Lamp J, et al. Characterization of the pediatic chest and abdomen using three post-mortem human subjects//22nd International Technical Conference on the Enhanced Safety of Vehicles, 2011: 11-0394.
[5]  5. Kent R, Salzar R, Kerrigen J, et al. Pediatric thoracoabdominal biomechanics. Stapp Car Crash J, 2009, 53: 373-401.
[6]  6. Cui S H, Chen Y, Li H Y, et al. Development,validation and parametric study of a 3-Year-Old child head finite element model. 3D Research, 2015, 6(4): 1-10.
[7]  7. 兰凤崇, 蔡志华, 陈吉清, 等. 汽车碰撞中胸-腹部的生物力学响应与损伤评价. 华南理工大学学报:自然科学版, 2012, 40(12): 70-78.
[8]  8. Roth S, Vappou J, Raul J S, et al. Child head injury criteria investigation through numerical simulation of real world trauma. Comput Methods Programs Biomed, 2009, 93(1): 32-45.
[9]  9. Jiang Binhui, Cao Libo, Mao Haojie, et al. Development of a 10-year-old paediatric thorax finite element model validated against cardiopulmonary resuscitation data. Comput Methods Biomech Biomed Engin, 2014, 17(11): 1185-1197.
[10]  10. Lv W L, Ruan S J, Li H Y, et al. Development and validation of a 6-year-old pedestrian thorax and abdomen finite element model and impact injury analysis. Int J.Vehicle Safety, 2015, 8(4): 339-356.
[11]  11. Stitzel J D, Gayzik F S, Hoth J J, et al. Development of a finite element based injury metric for pulmonary contusion part I: model development and validation. Stapp Car Crash J, 2005(49): 271-289.
[12]  12. Yamada H. Strength of biological materials. Baltimore: Williams & Wilkins, 1970.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133