3. Zadeh A E, Khazaee A, Ranaee V. Classification of the electrocardiogram signals using supervised classifiers and efficient features. Comput Methods Programs Biomed, 2010, 99(2): 179-194.
[4]
4. Korürek M, Nizam A. Clustering MIT-BIH arrhythmias with Ant Colony Optimization using time domain and PCA compressed wavelet coefficients. Digit Signal Process, 2010, 20(4): 1050-1060.
[5]
5. Lin C C, Yang C M. Heartbeat classification using normalized RR intervals and morphological features. Mathematical Problems in Engineering, 2014, 2014(12): 1-11.
[6]
6. de Chazal P, O'Dwyer M, Reilly R B. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng, 2004, 51(7): 1196-1206.
[7]
7. Zhang H, Zhang L Q. ECG analysis based on PCA and Support Vector Machines//International Conference on Neural Networks and Brain. Beijing, China, 2005, 2: 743-747.
[8]
8. Wu Y, Zhang L. ECG classification using ICA features and support vector machines. Neural Information Processing, 2011, 7062: 146-154.
[9]
9. Ye Can, Kumar B V, Coimbra M T. Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans Biomed Eng, 2012, 59(10): 2930-2941.
[10]
10. 曹林林. 基于流形学习的分类技术. 济南: 山东师范大学, 2013.
[11]
11. Kallas M, Francis C, Kanaan L, et al. Multi-class SVM classification combined with kernel PCA feature extraction of ECG signals//Proceedings of International Conference on Telecommunications. Jounieh, Lebanon, 2012: 1-5.
14. Li Hongqiang, Liang Huan, Miao Chunjiao, et al. Novel ECG signal classification based on KICA nonlinear feature extraction. Circuits Systems and Signal Processing, 2016, 35(4): 1187-1197.
[15]
15. Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction. Science, 2000, 290(550): 2319-2323.
[16]
16. Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(550): 2323-2326.
[17]
17. Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput, 2003, 15(6): 1373-1396.
[18]
18. Lashgari E, Jahed M, Khalaj B. Manifold learning for ECG arrhythmia recognition//Iranian Conference on Biomedical Engineering. Tehran, Iran, 2013: 126-131.
[19]
19. Vemulapati M. Classification of ECG arrhythmia using manifold learning and support vector machine[R/OL]. (2015-04-02)[2016-5-18]. http://www.usc.edu/CSSF/History/2015/Projects/35186.pdf.
[20]
20. He X, Cai D, Yan S, et al. Neighborhood preserving embedding//Tenth IEEE International Conference on Computer Vision. Beijing, China, 2005: 1208-1213.
[21]
21. Moody G B, Mark R G. The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 2001, 20(3): 45-50.
[22]
22. Yazdani S, Vesin J M. Adaptive mathematical morphology for QRS fiducial points detection in the ECG//41st Computing in Cardiology Conference. Cambridge, MA, USA, 2014: 725-728.
[23]
23. Yeh Y C, Wang W J. QRS complexes detection for ECG signal: the Difference Operation Method. Comput Methods Programs Biomed, 2008, 91(3): 245-254.
26. Chang C C, Lin C J. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3, SI): 389-396.
[27]
27. übeyli E D. Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents. Computer Methods & Programs in Biomedicine, 2009, 93(3): 313-321.
[28]
28. Karpagachelvi D S. Classification of ECG signals using particle swarm optimization and extreme learning machine. International Journal of Engineering Sciences & Research Technology, 2014, 3(7): 95-102.
[29]
29. Chen Y H, Yu S N. Selection of effective features for ECG beat recognition based on nonlinear correlations. Artif Intell Med, 2012, 54(1): 43-52.