全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于独立分量分析的在线脑-机接口系统

DOI: doi:10.7507/1001-5515.201603003

Keywords: 独立分量分析, 脑-机接口, 在线系统, 运动想象

Full-Text   Cite this paper   Add to My Lib

Abstract:

在非植入式脑-机接口(BCI)研究中,独立分量分析(ICA)一直被认为是具有很大应用前景的脑电(EEG)预处理和特征增强方法,但到目前为止,有关在线 ICA-BCI 系统的研究与实现的报道还不多见。本文对基于 ICA 的运动想象 BCI(MIBCI)系统进行研究,结合 ICA 无监督学习特点和运动相关去同步化(ERD)现象,构建了一种简单实用的 ICA 空域滤波器设计方法和三类运动想象判别准则。为了验证所提算法的在线处理性能,本文基于 NeuroScan 脑电采集系统和 VC++ 软件平台,完整地实现了在线 ICA-MIBCI 实验系统。4 名受试者参加了系统测试实验,其中两名受试者参加了在线模式的实验。离线和在线实验的三分类运动想象识别结果分别达到了 89.78% 和 89.89%。实验结果表明,本文所提算法分类正确率高,时间开销小,具备跨平台移植的潜力

References

[1]  19. Kang H, Choi S. Bayesian common spatial patterns for multi-subject EEG classification. Neural Netw, 2014, 57(9): 39-50.
[2]  20. Samek W, Meinecke F C, Müller K R. Transferring subspaces between subjects in brain——computer interfacing. IEEE Trans Biomed Eng, 2013, 60(8): 2289-2298.
[3]  21. Samek W, Kawanabe M, Müller K R. Divergence-based framework for common spatial patterns algorithms. IEEE Rev Biomed Eng, 2014, 7: 50-72.
[4]  22. Delorme A, Palmer J, Onton J, et al. Independent EEG sources are dipolar. PLoS One, 2012, 7(2): e30135.
[5]  1. Pfurtscheller G, Flotzinger D, Kalcher J. Brain computer-interface-a new communication device for handicapped persons. Journal of Microcomputer Applications, 1993, 16(3): 293-299.
[6]  2. He B, Baxter B, Edelman B J, et al. Noninvasive brain-computer interfaces based on sensorimotor rhythms. Proceedings of the IEEE, 2015, 103(6): 907-925.
[7]  3. Vaughan T M, Wolpaw J R. The Third International Meeting on Brain-Computer interface technology: making a difference. IEEE Trans Neural Syst Rehabil Eng, 2006, 14(2): 126-127.
[8]  4. Makeig S, Kothe C, Mullen T, et al. Evolving signal processing for brain-computer interfaces. Proceedings of the IEEE, 2012(100): 1567-1584.
[9]  5. 程明, 高上凯, 张琳. 基于脑电信号的脑-计算机接口. 北京生物医学工程, 2000, 19(2): 113-118.
[10]  6. 吴小培, 周蚌艳, 张磊, 等. 运动想象脑-机接口中的 ICA 滤波器设计. 生物物理学报, 2014, 30(7): 540-554.
[11]  7. Ang K K, Chin Z Y, Wang C, et al. Filter Bank Common Spatial Pattern Algorithm on BCI Competition ⅣDatasets 2a and 2b. Front Neurosci, 2012, 6: 39.
[12]  8. Blankertz B, Tomioka R, Lemm S, et al. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag, 2008, 25(1): 41-56.
[13]  9. 段放, 高小榕. 一种基于运动想象的脑-机接口时空滤波器迭代算法. 中国生物医学工程学报, 2011, 30(1): 11-16.
[14]  10. 杨福生, 洪波. 独立分量分析的原理与应用. 北京: 清华大学出版社, 2006.
[15]  11. 郭晓静, 吴小培, 张道信, 等. 基于独立分量分析的脑电消噪与特征提取. 系统仿真学报, 2003, 15(2): 287-289.
[16]  12. Brunner C, Naeem M, Leeb R, et al. Spatial filtering and selection of optimized components in four class motor imagery EEG data using independent components analysis. Pattern Recognit Lett, 2007, 28(8): 957-964.
[17]  13. Grosse-Wentrup M, Buss M. Multiclass common spatial patterns and information theoretic feature extraction. IEEE Trans Biomed Eng, 2008, 55(8): 1991-2000.
[18]  14. Wang Yijun, Wang Yute, Jung T P. Translation of EEG spatial filters from resting to motor imagery using Independent component analysis. PLoS One, 2012, 7(5): e37665.
[19]  15. Lotte F, Guan C. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng, 2011, 58(2): 355-362.
[20]  16. Lang S, Kotchoubey B. Learning effects on event-related brain potentials. Neuroreport, 2000, 11(15): 3327-3331.
[21]  17. Kubota M, Sakakihara Y, Uchiyama Y, et al. New ocular movement detector system as a communication tool in ventilator-assisted Werdnig-Hoffmann disease. Dev Med Child Neurol, 2000, 42(1): 61-64.
[22]  18. Wu W, Chen Z, Gao X, et al. Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans Pattern Anal Mach Intell, 2015, 37(3): 639-653.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133