全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

高分辨率外周定量计算机断层扫描评估骨小梁微结构和骨强度的研究进展

DOI: doi:10.7507/1001-5515.201707068

Keywords: 高分辨率外周定量计算机断层扫描, 骨小梁微结构, 骨密度, 骨强度

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨小梁微结构是决定骨强度及其生理功能的重要因素,而普通 X 线与计算机断层扫描(CT)检查不能精确反映骨小梁的真实微结构。高分辨率外周定量计算机断层扫描(HR-pQCT)是近年来新兴的一项影像学检测技术,能够定性、定量测量体内骨小梁三维微结构和体积骨矿物质密度,具有极高的精度和相对低剂量的辐射。这种新型成像工具有利于我们更加深入地认识骨小梁微结构,利用 HR-pQCT 数据进行有限元分析建模计算,能够准确预测骨强度,结合三维重建图像及骨小梁微结构参数还能够评估骨质疏松和骨折风险。在本综述中,我们总结了 HR-pQCT 的技术流程、数据参数及其临床应用等内容,以期为 HR-pQCT 的普及和广泛应用提供一定参考

References

[1]  4. Manske S L, Davison E M, Burt L A, et al. The estimation of second-generation HR-pQCT from first-generation HR-pQCT using in vivo cross-calibration. J Bone Miner Res, 2017, 32(7): 1514-1524.
[2]  10. Shi Lin, Wang Defeng, Hung V W, et al. Fast and accurate 3-D registration of HR-pQCT images. IEEE Trans Inf Technol Biomed, 2010, 14(5): 1291-1297.
[3]  11. Putman M S, Yu E W, Lin D, et al. Differences in trabecular microstructure between black and white women assessed by individual trabecular segmentation analysis of HR-pQCT images. J Bone Miner Res, 2017, 32(5): 1100-1108.
[4]  15. Okazaki N, Burghardt A J, Chiba K, et al. Bone microstructure in men assessed by HR-pQCT: Associations with risk factors and differences between men with normal, low, and osteoporosis-range areal BMD. Bone reports, 2016, 5: 312-319.
[5]  37. Hung V W, Zhu T Y, Cheung W H, et al. Age-related differences in volumetric bone mineral density, microarchitecture, and bone strength of distal radius and tibia in Chinese women: a high-resolution pQCT reference database study. Osteoporos Int, 2015, 26(6): 1691-1703.
[6]  38. Cheung A M, Adachi J D, Hanley D A, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep, 2013, 11(2): 136-146.
[7]  39. Macdonald H M, Nishiyama K K, Kang Jian, et al. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-Based HR-pQCT study. J Bone Miner Res, 2011, 26(1): 50-62.
[8]  40. Farr J N, Khosla S. Skeletal changes through the lifespan-from growth to senescence. Nat Rev Endocrinol, 2015, 11(9): 513-521.
[9]  42. Burghardt A J, Kazakia G J, Sode M, et al. A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res, 2010, 25(12): 2558-2571.
[10]  44. Bala Y, Chapurlat R, Cheung A M, et al. Risedronate slows or partly reverses cortical and trabecular microarchitectural deterioration in postmenopausal women. J Bone Miner Res, 2014, 29(2): 380-388.
[11]  46. Rizzoli R, Chapurlat R D, Laroche J M, et al. Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis results of a 2-year study. Osteoporos Int, 2012, 23(1): 305-315.
[12]  47. MacDonald H M, Nishiyama K K, Hanley D A, et al. Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18 months of teriparatide therapy in postmenopausal women with osteoporosis. Osteoporos Int, 2011, 22(1): 357-362.
[13]  48. Tsai J N, Uihlein A V, Burnett-Bowie S, et al. Comparative effects of teriparatide, denosumab, and combination therapy on peripheral compartmental bone density, microarchitecture, and estimated strength: the DATA-HRpQCT study. J Bone Miner Res, 2015, 30(1): 39-45.
[14]  49. Chapurlat R D, Laroche M, Thomas T, et al. Effect of oral monthly ibandronate on bone microarchitecture in women with osteopenia-a randomized placebo-controlled trial. Osteoporos Int, 2013, 24(1): 311-320.
[15]  50. Vilayphiou N, Boutroy S, Szulc P, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res, 2011, 26(5): 965-973.
[16]  51. Macneil J A, Boyd S K. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone, 2008, 42(6): 1203-1213.
[17]  52. Karasik D, Demissie S, Lu D, et al. Bone strength estimated by micro-finite element analysis (μFEA) is heritable and shares genetic predisposition with areal BMD: the framingham study. J Bone Miner Res, 2017, 32(11): 2151-2156.
[18]  53. Okazaki R. Bone architecture and strength in diabetes mellitus. Clin Calcium, 2013, 23(7): 1001-1006.
[19]  54. Wesseling-Perry K, Bacchetta J. CKD-MBD after kidney transplantation. Pediatr Nephrol, 2011, 26(12): 2143-2151.
[20]  55. Patsch J M, Burghardt A J, Yap S P, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res, 2013, 28(2): 313-324.
[21]  56. Ostertag A, Collet C, Chappard C A, et al. A case-control study of fractures in men with idiopathic osteoporosis: Fractures are associated with older age and low cortical bone density. Bone, 2013, 52(1): 48-55.
[22]  57. Boutroy S, Khosla S, Sornay-Rendu E A, et al. Microarchitecture and peripheral BMD are impaired in postmenopausal white women with fracture independently of total hip T-Score: an international multicenter study. J Bone Miner Res, 2016, 31(6): 1158-1166.
[23]  6. Sode M, Burghardt A J, Pialat J B, et al. Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia. Bone, 2011, 48(6): 1291-1297.
[24]  7. Hosseini H S, Maquer G, Zysset P K. mu CT-based trabecular anisotropy can be reproducibly computed from HR-pQCT scans using the triangulated bone surface. Bone, 2017, 97: 114-120.
[25]  8. Kroker A, ZHU Ying, Manske S L, et al. Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT. Bone, 2017, 97: 43-48.
[26]  9. Boutroy S, Bouxsein M L, Munoz F, et al. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab, 2005, 90(12): 6508-6515.
[27]  12. Edwards M H, Paccou J, Ward K A, et al. The relationship of bone properties using high resolution peripheral quantitative computed tomography to radiographic components of hip osteoarthritis. Osteoarthritis Cartilage, 2017, 25: 1478-1483.
[28]  16. Stauber M, Müller R. Volumetric spatial decomposition of trabecular bone into rods and plates--a new method for local bone morphometry. Bone, 2006, 38(4): 475-484.
[29]  18. Liu X S, Cohen A, Shane E, et al. Individual trabeculae segmentation (ITS)-based morphological analysis of high-resolution peripheral quantitative computed tomography images detects abnormal trabecular plate and rod microarchitecture in premenopausal women with idiopathic osteoporosis. J Bone Miner Res, 2010, 25(7): 1496-1505.
[30]  20. Valentinitsch A, Patsch J M, Deutschmann J, et al. Automated threshold-independent cortex segmentation by 3D-texture analysis of HR-pQCT scans. Bone, 2012, 51(3): 480-487.
[31]  1. Chiba K, Osaki M. New methods for the evaluation of bone quality. Assessment of bone quality by HR-pQCT. Clin Calcium, 2017, 27(8): 1131-1137.
[32]  2. Bonaretti S, Majumdar S, LANG T F, et al. The comparability of HR-pQCT bone measurements is improved by scanning anatomically standardized regions. Osteoporos Int, 2017, 28(7): 2115-2128.
[33]  3. Fournie C, Pelletier S, Bacchetta J, et al. The relationship between body composition and bone quality measured with HR-pQCT in peritoneal dialysis patients. Perit Dial Int, 2017, 37(5): 548-555.
[34]  5. Pauchard Y, Ayres F J, Boyd S K. Automated quantification of three-dimensional subject motion to monitor image quality in high-resolution peripheral quantitative computed tomography. Phys Med Biol, 2011, 56(20): 6523-6543.
[35]  23. Nishiyama K K, Macdonald H M, Hanley D A, et al. Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT. Osteoporos Int, 2013, 24(5): 1733-1740.
[36]  24. Nishiyama K K, Macdonald H M, Buie H R, et al. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res, 2010, 25(4): 882-890.
[37]  25. Liu X S, Shane E, McMahon D J, et al. Individual trabecula segmentation (ITS)-based morphological analysis of microscale images of human tibial trabecular bone at limited spatial resolution. J Bone Miner Res, 2011, 26(9): 2184-2193.
[38]  26. Tjong W, Kazakia G J, Burghardt A J. The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure. Med Phys, 2012, 39(4): 1893-1903.
[39]  28. Burghardt A J, Link T M, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res, 2011, 469(8): 2179-2193.
[40]  31. Nishiyama K K, Macdonald H M, Moore S A, et al. Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: An HR-pQCT study. J Bone Miner Res, 2012, 27(2): 273-282.
[41]  32. Farr J N, Dimitri P. The impact of fat and obesity on bone microarchitecture and strength in children. Calcif Tissue Int, 2017, 100(5, SI): 500-513.
[42]  33. Kelley J C, Crabtree N, Zemel B S. Bone density in the obese child: clinical considerations and diagnostic challenges. Calcif Tissue Int, 2017, 100(5, SI): 514-527.
[43]  35. Burt L A, Macdonald H M, Hanley D A, et al. Bone microarchitecture and strength of the radius and tibia in a reference population of young adults: an HR-pQCT study. Arch Osteoporos, 2014, 9: 183.
[44]  36. Fuller H, Fuller R, Pereira R M. High resolution peripheral quantitative computed tomography for the assessment of morphological and mechanical bone parameters. Rev Bras Reumatol, 2015, 55(4): 352-362.
[45]  13. Manske S L, Zhu Ying, Sandino C, et al. Human trabecular bone microarchitecture can be assessed independently of density with second generation HR-pQCT. Bone, 2015, 79: 213-221.
[46]  14. Pialat J B, Burghardt A J, Sode M, et al. Visual grading of motion induced image degradation in high resolution peripheral computed tomography: Impact of image quality on measures of bone density and micro-architecture. Bone, 2012, 50(1): 111-118.
[47]  17. Odgaard A, Gundersen H J. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone, 1993, 14(2): 173-182.
[48]  19. Buie H R, Campbell G M, Klinck R, et al. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone, 2007, 41(4): 505-515.
[49]  21. Kawalilak C E, Johnston J D, Cooper D, et al. Role of endocortical contouring methods on precision of HR-pQCT-derived cortical micro-architecture in postmenopausal women and young adults. Osteoporos Int, 2016, 27(2): 789-796.
[50]  22. Barnabe C, Szabo E, Martin L, et al. Quantification of small joint space width, periarticular bone microstructure and erosions using high-resolution peripheral quantitative computed tomography in rheumatoid arthritis. Clin Exp Rheumatol, 2013, 31(2): 243-250.
[51]  27. Burghardt A J, Buie H R, Laib A, et al. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone, 2010, 47(3): 519-528.
[52]  29. Engelke K, Stampa B, Timm W, et al. Short-term in vivo precision of BMD and parameters of trabecular architecture at the distal forearm and tibia. Osteoporos Int, 2012, 23(8): 2151-2158.
[53]  30. Krause M, Museyko O, Breer S, et al. Accuracy of trabecular structure by HR-pQCT compared to gold standard μCT in the radius and tibia of patients with osteoporosis and long-term bisphosphonate therapy. Osteoporos Int, 2014, 25(5): 1595-1606.
[54]  34. Nirody J A, Cheng K P, Parrish R M, et al. Spatial distribution of intracortical porosity varies across age and sex. Bone, 2015, 75: 88-95.
[55]  41. Bjornerem A, Ghasem-Zadeh A, Bui M, et al. Remodeling markers are associated with larger intracortical surface area but smaller trabecular surface area: A twin study. Bone, 2011, 49(6): 1125-1130.
[56]  43. Cheung A M, Majumdar S, Brixen K, et al. Effects of odanacatib on the radius and tibia of postmenopausal women: improvements in bone geometry, microarchitecture, and estimated bone strength. J Bone Miner Res, 2014, 29(8): 1786-1794.
[57]  45. Rizzoli R, Laroche M, Krieg M A, et al. Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int, 2010, 30(10): 1341-1348.
[58]  58. Popp A W, Windolf M, Senn C, et al. Prediction of bone strength at the distal tibia by HR-pQCT and DXA. Bone, 2012, 50(1): 296-300.
[59]  59. Sornay-Rendu E, Boutroy S, Munoz F A. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: The OFELY study. J Bone Miner Res, 2007, 22(3): 425-433.
[60]  60. Melton L J, 3rd, Riggs B L, van Lenthe G H, et al. Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res, 2007, 22(9): 1442-1448.
[61]  61. Vico L, Zouch M, Amirouche A, et al. High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J Bone Miner Res, 2008, 23(11): 1741-1750.
[62]  62. Stein E M, Liu X S, Nickolas T L, et al. Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J Bone Miner Res, 2010, 25(12): 2572-2581.
[63]  63. Stein E M, Liu X S, Nickolas T L, et al. Microarchitectural abnormalities are more severe in postmenopausal women with vertebral compared to nonvertebral fractures. J Clin Endocrinol Metab, 2012, 97(10): E1918-E1926.
[64]  64. Vilayphiou N, Boutroy S, Sornay-Rendu E, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in postmenopausal women. Bone, 2010, 46(4): 1030-1037.
[65]  65. Graeff C, Marin F, Petto H, et al. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Bone, 2013, 52(2): 568-577.
[66]  66. Rozental T D, Deschamps L N, Taylor A A, et al. Premenopausal women with a distal radial fracture have deteriorated trabecular bone density and morphology compared with controls without a fracture. J Bone Joint Surg Am, 2013, 95A(7): 633-642.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133