全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一种非溶出广谱抑菌型聚己内酯/明胶-有机硅季铵盐纳米纤维膜用于伤口敷料

DOI: doi:10.7507/1001-5515.201701020

Keywords: 静电纺丝, 抗菌, 伤口敷料, 季铵盐

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究采用 5~20 wt% 的三甲氧基硅基丙基十八烷基二甲氧氯化铵(QAS)改性聚己内酯(PCL)/明胶复合材料(PG-Q),再通过静电纺丝技术制备出一种非溶出广谱抑菌型纳米纤维膜。扫描电镜和透射电镜观察表明 QAS 能促使明胶和 PCL 的相分离。动态水接触角结果证明 QAS 能够提高膜的表面憎水性,有利于敷料与伤口剥离。傅里叶变换红外光谱结果证明 QAS 与 PCL 及明胶之间存在着氢键及化学交联作用,有利于长效抑菌。此外,PG-Q 膜具有良好的细胞亲和性。其中 QAS 占 15 wt% 及 20 wt% 的样品 12 h 后对金葡菌及绿脓杆菌的抑制率均超过 99%。该 PG-Q 膜可作为一种抑菌型伤口敷料用于创面护理

References

[1]  2. Abrigo M, Mcarthur S L, Kingshott P. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci, 2014, 14(6): 772-792.
[2]  3. Rieger K A, Birch N P, Schiffman J D. Designing electrospun nanofiber mats to promote wound healing—a review. J Mater Chem B, 2013, 1(36): 4531-4541.
[3]  4. Xue Jiajia, He Min, Liu Hao, et al. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials, 2014, 35(34): 9395-9405.
[4]  5. Torres-Giner S, Martinez-Abad A, Gimeno-Alca?iz J V, et al. Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers. Adv Eng Mater, 2012, 14(4): B112-B122.
[5]  6. Toncheva A, Paneva D, Maximova V, et al. Antibacterial fluoroquinolone antibiotic-containing fibrous materials from poly(L-lactide-co-D,L-lactide) prepared by electrospinning. Eur J Pharm Sci, 2012, 47(4): 642-651.
[6]  7. Rujitanaroj P O, Pimpha N, Supaphol P. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer (Guildf), 2008, 49(21): 4723-4732.
[7]  8. Hong K H. Preparation and properties of electrospun poly(vinyl alcohol)/silver fiber web as wound dressings. Polym Eng Sci, 2007, 47(1): 43-49.
[8]  9. Dashdorj U, Reyes M K, Unnithan A R, et al. Fabrication and characterization of electrospun zein/Ag nanocomposite mats for wound dressing applications. Int J Biol Macromol, 2015, 80: 1-7.
[9]  10. Lundin J G, Coneski P N, Fulmer P A, et al. Relationship between surface concentration of amphiphilic quaternary ammonium biocides in electrospun polymer fibers and biocidal activity. React Funct Polym, 2014, 77: 39-46.
[10]  11. Buffet-Bataillon S, Tattevin P, Bonnaure-Mallet M, et al. Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds—a critical review. Int J Antimicrob Agents, 2012, 39(5): 381-389.
[11]  16. Yang Fang, Both S K, Yang Xuechao, et al. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater, 2009, 5(9): 3295-3304.
[12]  17. Lee J, Tae G, Kim Y H, et al. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials, 2008, 29(12): 1872-1879.
[13]  12. Asri L A T W, Crismaru M, Roest S, et al. A shape-adaptive, antibacterial-coating of immobilized quaternary-ammonium compounds tethered on hyperbranched polyurea and its mechanism of action. Adv Funct Mater, 2014, 24(3): 346-355.
[14]  13. Song J, Kong H, Jang J. Bacterial adhesion inhibition of the quaternary ammonium functionalized silica nanoparticles. Colloids Surf B Biointerfaces, 2011, 82(2): 651-656.
[15]  14. Andresen M, Stenstad P, M?retr? T, et al. Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules, 2007, 8(7): 2149-2155.
[16]  15. Woodruff M A, Hutmacher D W. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci, 2010, 35(10): 1217-1256.
[17]  1. Metcalfe A D, Ferguson M W. Bioengineering skin using mechanisms of regeneration and repair. Biomaterials, 2007, 28(34): 5100-5113.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133