4. Aagaard P, Suetta C, Caserotti P, et al. Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports, 2010, 20(1): 49-64.
[2]
6. Dirks M L, Wall B T, Snijders T, et al. Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans. Acta Physiol (Oxf), 2014, 210(3): 628-641.
[3]
11. Jia Xiaohong, Zhang Ming, Lee W C C. Load transfer mechanics between trans-tibial prosthetic socket and residual limb-dynamic effects. J Biomech, 2004, 37(9): 1371-1377.
[4]
12. Lee W C C, Zhang Ming, Jia Xiaohong, et al. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket. Med Eng Phys, 2004, 26(8): 655-662.
[5]
14. Zhang M, Mak A F T, Roberts V C. Finite element modelling of a residual lower-limb in a prosthetic socket: a survey of the development in the first decade. Med Eng Phys, 1998, 20(5): 360-373.
[6]
15. Yan F, Jiang W, Dong W, et al. Blood flow and oxygen transport in the descending branch of lateral femoral circumflex arteries after transfemoral amputation: a numerical study. J Med Biol Eng, 2017, 37(1): 63-73.
20. Lee W C C, Frossard L A, Hagberg K, et al. Kinetics of transfemoral amputees with osseointegrated fixation performing common activities of daily living. Clin Biomech (Bristol, Avon), 2007, 22(6): 665-673.
[9]
1. Fraisse N, Martinet N, Kpadonou T G, et al. Muscles of the below-knee amputees. Ann Readapt Med Phys, 2008, 51(3): 218-227.
[10]
2. Schmalz T, Blumentritt S, Reimers C D. Selective thigh muscle atrophy in trans-tibial amputees: an ultrasonographic study. Archives of Orthopaedic and Trauma Surgery, 2001, 121(6): 307-312.
[11]
3. Sanders J E, Harrison D S, Allyn K J, et al. Clinical utility of in-socket residual limb volume change measurement: case study results. Prosthet Orthot Int, 2009, 33(4): 378-390.
[12]
5. Bongers K S, Fox D K, Ebert S M, et al. Skeletal muscle denervation causes skeletal muscle atrophy through a pathway that involves both Gadd45a and HDAC4. Am J Physiol Endocrinol Metab, 2013, 305(7): E907-E915.
[13]
7. Guillot M, Charles A L, Chamaraux-Tran T N, et al. Oxidative stress precedes skeletal muscle mitochondrial dysfunction during experimental aortic cross-clamping but is not associated with early lung, heart, brain, liver, or kidney mitochondrial impairment. J Vasc Surg, 2014, 60(4): 1043-51.e5.
9. Glass D J. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol, 2005, 37(10): 1974-1984.
[16]
10. Caron M A, Thériault M è, Paré M , et al. Hypoxia alters contractile protein homeostasis in L6 myotubes. FEBS Lett, 2009, 583(9): 1528-1534.
[17]
13. Portnoy S, Yizhar Z, Shabshin N, et al. Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee. J Biomech, 2008, 41(9): 1897-1909.
[18]
16. Dong Ruiqi, Li Xiaolong, Yan Fei, et al. The spatial structure changes of thigh arterial trees after transfemoral amputation: case studies. J Med Imaging Health Inf, 2016, 6(3): 688-692.
[19]
18. Kirkendall W M, Burton A C, Epstein F H, et al. Recommendations for human blood pressure determination by sphygmomanometers. Circulation, 1967, 36(6): 980-988.
[20]
19. 朱大年, 郑黎明. 人体解剖生理学. 上海: 复旦大学出版社, 2002.
[21]
21. Wyllie A H. Apoptosis: cell death in tissue regulation. J Pathol, 1987, 153(4): 313-316.
[22]
22. Sanders J E, Daly C H. Normal and shear stresses on a residual limb in a prosthetic socket during ambulation: comparison of finite element results with experimental measurements. J Rehabil Res Dev, 1993, 30(2): 191-204.