全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

腰椎椎间融合坚强固定与弹性固定生物力学效果的三维有限元分析

DOI: doi:10.7507/1001-5515.20150058

Keywords: 坚强固定, 弹性固定, 腰椎融合, 三维有限元分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

比较腰椎坚强固定与弹性固定的三维有限元模型在不同生理载荷条件下的力学特点。我们以健康男性志愿者为样本建立模型, 观察它们在垂直、屈曲和后伸扭矩下的应力分布特点。结果显示:在不同的载荷下, 坚强固定连接棒的受力是弹性固定的4~6倍, 弹性固定应力峰值及受力面积较坚强固定大。表明弹性固定在促进椎间融合方面比坚强固定更有生物力学的优越性

References

[1]  1. GOEL V K, KONZ R J, CHANG H T, et al. Hinged-dynamic posterior device permits greater loads on the graft and simila stability as compared with its equivalent rigid device:a three-dimensional finite element assessment[J]. J Prosthet Orthop, 2001, 13(1):17-20.
[2]  2. DUFFIELD R C, CARSON W L, CHEN Liuyuan, et al. Longitudinal element size effect on load sharing, internal loads, and fatigue life of tri-level spinal implant constructs[J]. Spine (Phila Pa 1976), 1993, 18(12):1695-1703.
[3]  3. OKUDA S, MIYAUCHI A, ODA T, et al. Surgical complications of posterior lumbar interbody fusion with total facetectomy in 251 patients[J]. J Neurosurg Spine, 2006, 4(4):304-309.
[4]  4. GOMLEKSIZ C, SASANI M, OKTENOGLU T, et al. A short history of posterior dynamic stabilization[J]. Adv Orthop, 2012, 2012:Article ID 629698.
[5]  5. CHRISTIE S D, SONG J K, FESSLER R G. Dynamic interspinous process technology[J]. Spine (Phila Pa 1976), 2005, 30(16 Suppl):S73-S78.
[6]  6. 闫家智, 吴志宏, 汪学松, 等.腰椎三维有限元模型建立和应力分析[J].中华医学杂志, 2009, 89(17):1162-1165.
[7]  7. 王乃国.腰椎棘突间动力固定的三维有限元分析和前瞻性临床研究[D].北京:中国协和医科大学, 2010.
[8]  9. NIOSI C A, ZHU Q A, WILSON D C, et al. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system:an in vitro study[J]. Eur Spine J, 2006, 15(6):913-922.
[9]  10. SCHMOELZ W, HUBER J F, NYDEGGER T, et al. Influence of a dynamic stabilisation system on load bearing of a bridged disc:an in vitro study of intradiscal pressure[J]. Eur Spine J, 2006, 15(8):1276-1285.
[10]  11. ROHLMANN A, BURRA N K, ZANDER T, et al. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine:a finite element analysis[J]. Eur Spine J, 2007, 16(8):1223-1231.
[11]  8. BARREY C Y. Dynamic instrumentation for fusion with Isobar TTLTM:biomechanical and clinical aspects[J]. ArgoSpine News J, 2010, 22(2):62-66.
[12]  12. CHENG B C, GORDON J, CHENG J, et al. Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion[J]. Spine (Phila Pa 1976), 2007, 32(23):2551-2557.
[13]  13. CHRASTIL J, PATEL A A. Complications associated with posterior and transforaminal lumbar interbody fusion[J]. J Am Acad Orthop Surg, 2012, 20(5):283-291.
[14]  14. ROHLMANN A, CALISSE J, BERGMANN G, et al. Internal spinal fixator stiffness has only a minor influence on stresses in the adjacent discs[J]. Spine (Phila Pa 1976), 1999, 24(12):1192-1195; discussion 1195-6.
[15]  15. TSUBOTA K I, ADACHI T, TOMITA Y. Effects of a fixation screw on trabecular structural changes in a vertebral body predicted by remodeling simulation[J]. Ann Biomed Eng, 2003, 31(6):733-740.
[16]  16. WILKE H J, DRUMM J, H?USSLER K, et al. Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure[J]. Eur Spine J, 2008, 17(8):1049-1056.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133