全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于视觉显著性和旋转扫描的视盘分割新方法

DOI: doi:10.7507/1001-5515.201706013

Keywords: 视盘分割, 视觉显著性, 旋转扫描

Full-Text   Cite this paper   Add to My Lib

Abstract:

视盘的快速定位与边缘分割是计算机辅助诊断的重要研究课题。本研究提出了一种有效的视盘分割新方法,将人眼视觉特性引入眼底图像的分析与处理。本文提出的这一方法充分考虑视盘在眼底图像中的形态特征,通过快速定位感兴趣区域,同时融合视盘的亮度、颜色和空间分布等视觉显著性特征,生成了基于像素距离的显著性图,并应用自适应阈值分割视盘。在此基础上,进一步提出旋转扫描方法,以减少血管对视盘完整性的影响和干扰,最终获得连续完整的边缘轮廓。然后,本课题组在眼底图像数据库 Drishti-GS 中验证提出的视盘边缘分割方法是否有效。本文研究结果显示,该方法简单快捷,具有良好的性能指标,能达到眼科专家的分割水平,今后或有助于眼科疾病的计算机辅助诊断

References

[1]  1. 邹北骥, 张思剑, 朱承璋. 彩色眼底图像视盘自动定位与分割. 光学精密工程, 2015, 23(4): 1187-1195.
[2]  2. Aquino A. Gegúndez-Arias M E, Marín D. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Transactions on Medical Imaging, 2010, 29(11): 1860-1869.
[3]  3. Besenczi R, Toth J, Hajdu A. A review on automatic analysis techniques for color fundus photographs. Comput Struct Biotechnol J, 2016, 14: 371-384.
[4]  4. Lu Shijian, Lim J H. Automatic optic disc detection from retinal images by a line operator. IEEE Trans Biomed Eng, 2011, 58(1): 88-94.
[5]  5. Lu Shijian. Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans Med Imaging, 2011, 30(12): 2126-2133.
[6]  6. Yu H, Barriga E S, Agurto C, et al. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level Sets. IEEE Transactions on Information Technology in Biomedicine, 2012, 16(4): 644-657.
[7]  7. Youssif A R, Ghalwash A Z, Ghoneim A R. Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter. IEEE Transactions on Medical Imaging, 2008, 27(1): 11-18.
[8]  8. 郑绍华, 陈健, 潘林, 等. 基于定向局部对比度的眼底图像视盘检测方法. 中国生物医学工程学报, 2014, 33(3): 289-296.
[9]  9. Garduno-Alvarado T, Elena Martinez-Perez M, Ana Martinez-Castellanos M, et al. Fast optic disc segmentation in fundus images//proceedings of 2016 future technologies conference (FTC), San Francisco, 2016: 1335-1339.
[10]  10. Saleh M D, Salih N D, Eswaran C, et al. Automated segmentation of optic disc in fundus images//2014 IEEE 10th international colloquium on signal processing and its applications (CSPA 2014), Kuala Lumpur, 2014: 145-150.
[11]  11. 张东波, 易瑶, 赵圆圆. 基于投影的视网膜眼底图像视盘检测方法. 中国生物医学工程学报, 2013, 32(4): 477-483.
[12]  12. Cheng Jun, Liu Jiang, Xu Yanwu, et al. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans Med Imaging, 2013, 32(6): 1019-1032.
[13]  13. Mahapatra D, Buhmann J M. A field of experts model for optic cup and disc segmentation from retinal fundus images//2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), Brooklyn, 2015: 218-221.
[14]  14. Mittapalli P S, Kande G B. Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomed Signal Process Control, 2016, 24: 34-46.
[15]  15. Itti L, Koch C. Computational modeling of visual attention. Nat Rev Neurosci, 2001, 2(3): 194-203.
[16]  16. 柯鑫, 江威, 朱江兵. 基于视觉注意机制的眼底图像视盘快速定位与分割. 科学技术与工程, 2015, 15(35): 47-53.
[17]  17. 裴晓敏, 季久玉, 刘文进. 基于视觉显著性特征的乳腺肿块检测方法. 光电子?激光, 2017, 28(1): 117-122.
[18]  18. Sivaswamy J, Krishnadas S R, Joshi G D, et al. Drishti-gs: retinal image dataset for optic nerve head(onh) segmentation// IEEE ISBI, Beijing, 2014: 53-56.
[19]  19. 董琳, 赵尔敦, 刘心馨, 等. 一种新型的视盘分割方法. 计算机与数字工程, 2015, 43(7): 1333-1336, 1364.
[20]  20. Zhang Zheng, Han Xiao, Pearson E, et al. Artifact reduction in short-scan CBCT by use of optimization-based reconstruction. Phys Med Biol, 2016, 61(9): 3387-3406.
[21]  21. Zhang Zheng, Ye Jinghan, Chen Buxin, et al. Investigation of optimization-based reconstruction with an image-total-variation constraint in PET. Phys Med Biol, 2016, 61(16): 6055-6084.
[22]  22. Zhang Zheng, Xia Dan, Han Xiao, et al. Impact of image constraints and object structures on Optimization-Based Reconstruction//Proceedings of The 4th International Conference on Image Formation in X-Ray Computed Tomography, Bamberg, 2016: 487-490.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133