3. Mahtani K R, Nunan D, Heneghan C J. Device-guided breathing exercises in the control of human blood pressure: systematic review and meta-analysis. J Hypertens, 2012, 30(5): 852-860.
[4]
4. Landman G W, van Hateren K J, van Dijk P R, et al. Efficacy of device-guided breathing for hypertension in blinded, randomized, active-controlled trials: a meta-analysis of individual patient data. JAMA Intern Med, 2014, 174(11): 1815-1821.
[5]
5. Anderson D E, Mcneely J D, Windham B G. Regular slow-breathing exercise effects on blood pressure and breathing patterns at rest. J Hum Hypertens, 2010, 24(12): 807-813.
[6]
6. Elliott W J, Izzo J L. Device-guided breathing to lower blood pressure: case report and clinical overview. MedGenMed, 2006, 8(3): 23.
[7]
7. Joseph C N, Porta C, Casucci G, et al. Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension, 2005, 46(4): 714-718.
[8]
8. Howorka K, Pumprla J, Tamm J, et al. Effects of guided breathing on blood pressure and heart rate variability in hypertensive diabetic patients. Auton Neurosci, 2013, 179(1/2): 131-137.
[9]
9. Chang Qinghua, Liu Renguang, LI Changjun, et al. Effects of slow breathing rate on blood pressure and heart rate variabilities in essential hypertension. Int J Cardiol, 2015, 185(1): 52-54.
[10]
10. van Hateren K J, Landman G W, Logtenberg S J, et al. Device-guided breathing exercises for the treatment of hypertension: An overview. World J Cardiol, 2014, 6(5): 277-282.
[11]
11. Diao Ziji, Liu Hongying, Zhu Lan, et al. Therapeutic hypertension system based on a microbreathing pressure sensor system. Med Devices (Auckl), 2011, 4: 51-57.
13. Landman G W, Drion I, van Hateren K J, et al. Device-guided breathing as treatment for hypertension in type 2 diabetes mellitus: a randomized, double-blind, sham-controlled trial. JAMA Intern Med, 2013, 173(14): 1346-1350.
[14]
14. Hering D, Kucharska W, Kara T, et al. Effects of acute and long-term slow breathing exercise on muscle sympathetic nerve activity in untreated male patients with hypertension. J Hypertens, 2013, 31(4): 739-746.
[15]
15. Fiamma M N, Samara Z, Baconnier P, et al. Respiratory inductive plethysmography to assess respiratory variability and complexity in humans. Respir Physiol Neurobiol, 2007, 156(2): 234-239.
[16]
16. Robles-Rubio C, Bertolizio G, Brown K, et al. Scoring tools for the analysis of infant respiratory inductive plethysmography signals. PLoS One, 2015, 10(7): e0134182.