全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

利用CRISPR/Cas9技术繁育基因修饰猪在医学领域的研究进展

DOI: doi:10.7507/1001-5515.201802046

Keywords: 规律性短重复回文序列簇及相关蛋白 9, 大型动物疾病模型, 基因修饰猪, 基因编辑

Full-Text   Cite this paper   Add to My Lib

Abstract:

猪在解剖学、生理病理学、营养代谢和疾病特征等方面都与人类相似度较高,基因修饰猪现已是疾病发生机制、病理毒理研究、治疗药物评估等众多领域所需的重要动物模型。但是大型基因修饰动物模型生产难度大、步骤繁琐、耗时长、成本高昂。随着基因编辑技术的突破,规律性短重复回文序列簇(CRISPR)和 CRISPR 相关蛋白 9(Cas9)构成的 CRISPR/Cas9 技术大大提高了基因突变效率,降低了基因修饰动物模型的造模成本,同时简化了步骤,推进了基因修饰猪的广泛应用。本文主要综述了基因修饰猪的生产方法以及利用 CRISPR/Cas9 技术生产人类疾病动物模型猪的研究进展

References

[1]  14. Peng Jin, Wang Yong, Jiang Junyi, et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep, 2015, 5: 16705.
[2]  15. Wu Jun, Vilarino M, Suzuki K, et al. CRISPR-Cas9 mediated one-step disabling of pancreatogenesis in pigs. Sci Rep, 2017, 7(1): 10487.
[3]  27. Wang Xianlong, Cao Chunwei, Huang Jiaojiao, et al. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep, 2016, 6: 20620.
[4]  37. Zhang Yongliang, Xi Qianyun, Ding Jinghua, et al. Production of transgenic pigs mediated by pseudotyped lentivirus and sperm. PLoS One, 2012, 7(4): e35335.
[5]  2. Niemann H, Petersen B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res, 2016, 25(3): 361-374.
[6]  3. Butler J R, Ladowski J M, Martens G R, et al. Recent advances in genome editing and creation of genetically modified pigs. Int J Surg, 2015, 23(Pt B): 217-222.
[7]  4. Song Chanwoo, Lee J, Lee S Y. Genome engineering and gene expression control for bacterial strain development. Biotechnol J, 2015, 10(1): 56-68.
[8]  5. Eid A, Mahfouz M M. Genome editing: the road of CRISPR/Cas9 from bench to clinic. Exp Mol Med, 2016, 48(10): e265.
[9]  6. Ulain Q, Chung J Y, Kim Y H. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release, 2015, 205: 120-127.
[10]  7. Samanta M K, Dey A, Gayen S. CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Res, 2016, 25(5): 561-573.
[11]  8. Lafountaine J S, Fathe K, Smyth H D. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int J Pharm, 2015, 494(1): 180-194.
[12]  13. Wang Haoyi, Yang Hui, Shivalila C S, et al. One-Step Generation of mice carrying mutations in multiple genes by CRISPR/Cas-Mediated genome engineering. Cell, 2013, 153(4): 910-918.
[13]  16. Lei Shaohua, Ryu J, Wen Ke, et al. Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency. Sci Rep, 2016, 6: 25222.
[14]  17. Sato M, Koriyama M, Watanabe S, et al. Direct injection of CRISPR/Cas9-Related mRNA into cytoplasm of partheno genetically activated porcine oocytes causes frequent mosaicism for indel mutations. Int J Mol Sci, 2015, 16(8): 17838-17856.
[15]  18. Wang Xianlong, Zhou Jinwei, Cao Chunwei, et al. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Sci Rep, 2015, 5: 13348.
[16]  19. Wu Jinqing, Mei Gui, Liu Zhiguo, et al. Improving gene targeting efficiency on pig IGF2 mediated by ZFNs and CRISPR/Cas9 by using SSA reporter system. Yi Chuan, 2015, 37(1): 55-62.
[17]  20. Tao Li, Yang Mingyao, Wang Xiaodong, et al. Efficient biallelic mutation in porcine parthenotes using a CRISPR-Cas9 system. Biochem Biophys Res Commun, 2016, 476(4): 225-229.
[18]  21. Wang Kepin, Jin Qin, Ruan Degong, et al. Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Res, 2017, 27(12): 2061-2071.
[19]  22. Hai Tang, Teng Fei, Guo Runfa, et al. One-step Generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res, 2014, 24(3): 372-375.
[20]  23. Lotem J, Levanon D, Negreanu V, et al. Runx3 at the interface of immunity, inflammation and cancer. Biochim Biophys Acta, 2015, 1855(2): 131-143.
[21]  24. Kang J T, Ryu J, Cho B, et al. Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting. Reproduction in Domestic Animals, 2016, 51(6): 970-978.
[22]  25. Wang Kankan, Ouyang Hongsheng, Xie Zicong, et al. Efficient Generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep, 2015, 5: 16623.
[23]  26. Yan Sen, Tu Zhuchi, Liu Zhaoming, et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in huntington's disease. Cell, 2018, 173(4): 989-1002.
[24]  28. Yang Luhan, Gueell M, Niu Dong, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 2015, 350(6264): 1101-1104.
[25]  29. Niu Dong, Wei Hongjiang, Lin Lin, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science, 2017, 357(6357): 1303-1307.
[26]  30. Estrada J L, Martens G, Li Ping, et al. Evaluation of human and non-human Primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes. Xenotransplantation, 2015, 22(3): 194-202.
[27]  35. Wu Zhenfang, Li Zicong, Yang Jinzeng. Transient transgene transmission to piglets by intrauterine insemination of spermatozoa incubated with DNA fragments. Mol Reprod Dev, 2008, 75(1): 26-32.
[28]  36. Lavitrano M, Giovannoni R, Cerrito M G. Methods for sperm-mediated gene transfer. Methods Mol Biol, 2013, 927: 519-529.
[29]  31. Butler J R, Paris L L, Blankenship R L, et al. Silencing porcine CMAH and GGTA1 genes significantly reduces xenogeneic consumption of human platelets by porcine livers. Transplantation, 2016, 100(3): 571-576.
[30]  32. Gao Hanchao, Zhao Chengjiang, Xiang Xi, et al. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning. J Reprod Dev, 2017, 63(1): 17-26.
[31]  33. Petersen B, Frenzel A, Lucas-Hahn A, et al. Efficient production of biallelic GGTA1 knockout pigs by cytoplasmic microinjection of CRISPR/Cas9 into zygotes. Xenotransplantation, 2016, 23(5): 338-346.
[32]  34. Kang J T, Cho B, Ryu J, et al. Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs. Reprod Biol Endocrinol, 2016, 14(1): 74.
[33]  38. Oddi S, Bernabò N, Di Tommaso M, et al. DNA uptake in swine sperm: effect of plasmid topology and methyl-beta-cyclodextrin-mediated cholesterol depletion. Mol Reprod Dev, 2012, 79(12): 853-860.
[34]  1. Whyte J J, Prather R S. Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev, 2011, 78(10/11): 879-891.
[35]  9. Chen Fengjiao, Wang Ying, Yuan Yilin, et al. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting. Journal of Genetics and Genomics, 2015, 42(8): 437-444.
[36]  10. Zhou Xiaoqing, Xin Jige, Fan Nana, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cellular and Molecular Life Sciences, 2015, 72(6): 1175-1184.
[37]  11. Bi Yanzhen, Hua Zaidong, Liu Ximei, et al. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep, 2016, 6: 31729.
[38]  12. Lai Sisi, Wei Shu, Zhao Bentian, et al. Generation of knock-in pigs carrying Oct4-tdTomato reporter through CRISPR/Cas9-mediated genome engineering. PLoS One, 2016, 11(1): e0146562.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133