2. Emayavaramban G, Amudha A. sEMG based classification of hand gestures using artificial neural network. Indian J Sci Technol, 2016, 9(35): 1-10.
[3]
3. Al Harrach M, Carriou V, Boudaoud S A, et al. Analysis of the sEMG/force relationship using HD-sEMG technique and data fusion: a simulation study. Comput Biol Med, 2017, 83: 34-47.
10. Li Xiaoyan, Zhou Ping, Aruin A S. Teager-Kaiser energy operation of surface EMG improves muscle activity onset detection. Ann Biomed Eng, 2007, 35(9): 1532-1538.
[7]
13. Wu Feiyun, Tong Feng, Yang Zhi. EMGdi signal enhancement based on ICA decomposition and wavelet transform. Appl Soft Comput, 2016, 43: 561-571.
16. Estrada L, Torres A, Sarlabous L, et al. Improvement in neural respiratory drive estimation from diaphragm electromyographic signals using fixed sample entropy. IEEE J Biomed Health Inform, 2016, 20(2): 476-485.
[19]
17. Estrada L, Torres A, Sarlabous L, et al. Onset and offset estimation of the neural inspiratory time in surface diaphragm electromyography: a pilot study in healthy subjects. IEEE J Biomed Health Inform, 2018, 22(1): 67-76.
21. Estrada L, Torres A, Sarlabous L, et al. Influence of parameter selection in fixed sample entropy of surface diaphragm electromyography for estimating respiratory activity. Entropy, 2017, 19(9): 460-474.