3. KANDA T, YOSHIKAWA T, OHNO Y, et al. CT hepatic perfusion measurement:comparison of three analytic methods[J]. Eur J Radiol, 2012, 81(9):2075-2079.
[2]
5. RONOT M, LAMBERT S, DAIRE J L, et al. Can we justify not doing liver perfusion imaging in 2013?[J]. Diagn Interv Imaging, 2013, 94(12):1323-1336.
[3]
6. VAN BEERS B E, LECONTE I, MATERNE R, et al. Hepatic perfusion parameters in chronic liver disease:dynamic CT measurements correlated with disease severity[J]. AJR Am J Roentgenol, 2001, 176(3):667-673.
[4]
7. OKADA M, KIM T, MURAKAMI T. Hepatocellular nodules in liver cirrhosis:state of the art CT evaluation (perfusion CT/volume helical shuttle scan/dual-energy CT, etc.)[J]. Abdom Imaging, 2011, 36(3):273-281.
[5]
8. MORSBACH F, SAH B R, SPRING L, et al. Perfusion CT best predicts outcome after radioembolization of liver metastases:a comparison of radionuclide and CT imaging techniques[J]. Eur Radiol, 2014, 24(7):1455-1465.
[6]
9. KIM S H, KAMAYA A, WILLMANN J K. CT perfusion of the liver:principles and applications in oncology[J]. Radiology, 2014, 272(2):322-344.
[7]
10. GARCIA-FIGUEIRAS R, GOH V J, PADHANI A R, et al. CT perfusion in oncologic imaging:a useful tool?[J]. AJR Am J Roentgenol, 2013, 200(1):8-19.
[8]
12. HOANG J K, WANG C, FRUSH D P, et al. Estimation of radiation exposure for brain perfusion CT:standard protocol compared with deviations in protocol[J]. AJR Am J Roentgenol, 2013, 201(5):W730-734.
[9]
13. RAMAN S P, JOHNSON P T, DESHMUKH S, et al. CT dose reduction applications:available tools on the latest generation of CT scanners[J]. J Am Coll Radiol, 2013, 10(1):37-41.
[10]
14. FUJITA M, KITAGAWA K, ITO T, et al. Dose reduction in dynamic CT stress myocardial perfusion imaging:comparison of 80-kV/370-mAs and 100-kV/300-mAs protocols[J]. Eur Radiol, 2014, 24(3):748-755.
[11]
15. LEE K H, LEE J M, MOON S K, et al. Attenuation-based automatic tube voltage selection and tube current modulation for dose reduction at contrast-enhanced liver CT[J]. Radiology, 2012, 265(2):437-447.
[12]
16. SCHWARZ F, GRANDL K, ARNOLDI A, et al. Lowering radiation exposure in CT angiography using automated tube potential selection and optimized iodine delivery rate[J]. AJR Am J Roentgenol, 2013, 200(6):W628-W634.
[13]
17. WATANABE S, KATADA Y, GOHKYU M, et al. Liver perfusion CT during hepatic arteriography for the hepatocellular carcinoma:dose reduction and quantitative evaluation for normal-and ultralow-dose protocol[J]. Eur J Radiol, 2012, 81(12):3993-3997.
[14]
18. KIM S M, KIM Y N, CHOE Y H. Adenosine-stress dynamic myocardial perfusion imaging using 128-slice dual-source CT:optimization of the CT protocol to reduce the radiation dose[J]. Int J Cardiovasc Imaging, 2013, 29(4):875-884.
[15]
19. LIN C J, WU T H, LIN C H, et al. Can iterative reconstruction improve imaging quality for lower radiation CT perfusion? Initial experience[J]. AJNR Am J Neuroradiol, 2013, 34(8):1516-1521.
[16]
20. NIESTEN J M, VAN DER SCHAAF I C, RIORDAN A J, et al. Radiation dose reduction in cerebral CT perfusion imaging using iterative reconstruction[J]. Eur Radiol, 2014, 24(2):484-493.
[17]
21. XIE Q, WU J, TANG Y, et al. Whole-organ CT perfusion of the pancreas:impact of iterative reconstruction on image quality, perfusion parameters and radiation dose in 256-slice CT-preliminary findings[J]. PLoS One, 2013, 8(11):e80468.
[18]
22. NEGI N, YOSHIKAWA T, OHNO Y, et al. Hepatic CT perfusion measurements:a feasibility study for radiation dose reduction using new image reconstruction method[J]. Eur J Radiol, 2012, 81(11):3048-3054.
[19]
23. SPEIDEL M A, BATEMAN C L, TAO Y, et al. Reduction of image noise in low tube current dynamic CT myocardial perfusion imaging using HYPR processing:a time-attenuation curve analysis[J]. Med Phys, 2013, 40(1):011904.
[20]
24. KANDA T, YOSHIKAWA T, OHNO Y, et al. Perfusion measurement of the whole upper abdomen of patients with and without liver diseases:initial experience with 320-detector row CT[J]. Eur J Radiol, 2012, 81(10):2470-2475.
[21]
25. KAMBADAKONE A R, SHARMA A, CATALANO O A, et al. Protocol modifications for CT perfusion (CTp) examinations of abdomen-pelvic tumors:impact on radiation dose and data processing time[J]. Eur Radiol, 2011, 21(6):1293-1300.
[22]
26. TAWFIK A M, RAZEK A A, ELHAWARY G, et al. Effect of increasing the sampling interval to 2 seconds on the radiation dose and accuracy of CT perfusion of the head and neck[J]. J Comput Assist Tomogr, 2014, 38(3):469-473.
[23]
1. GOH V, DATTANI M, FARWELL J, et al. Radiation dose from volumetric helical perfusion CT of the thorax, abdomen or pelvis[J]. Eur Radiol, 2011, 21(5):974-981.
[24]
2. BEGANOVIC A, SEFIC-PASIC I, SKOPLJAK-BEGANOVIC A, et al. Doses to skin during dynamic perfusion computed tomography of the liver[J]. Radiat Prot Dosimetry, 2013, 153(1):106-111.
[25]
4. GOETTI R, LESCHKA S, DESBIOLLES L, et al. Quantitative computed tomography liver perfusion imaging using dynamic spiral scanning with variable pitch:feasibility and initial results in patients with cancer metastases[J]. Invest Radiol, 2010, 45(7):419-426.
[26]
11. HAYANO K, LEE S H, YOSHIDA H, et al. Fractal analysis of CT perfusion images for evaluation of antiangiogenic treatment and survival in hepatocellular carcinoma[J]. Acad Radiol, 2014, 21(5):654-660.
[27]
27. SCHUHBACK A, MARWAN M, GAUSS S, et al. Interobserver agreement for the detection of atherosclerotic plaque in coronary CT angiography:comparison of two low-dose image acquisition protocols with standard retrospectively ECG-gated reconstruction[J]. Eur Radiol, 2012, 22(7):1529-1536.
[28]
28. HABERLAND U, KLOTZ E, ABOLMAALI N. Performance assessment of dynamic spiral scan modes with variable pitch for quantitative perfusion computed tomography[J]. Invest Radiol, 2010, 45(7):378-386.