全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

多特征聚类与粘连分离模型的细胞抹片图像分割与分类

DOI: doi:10.7507/1001-5515.201605004

Keywords: 胰腺细胞, 细胞抹片显微图像分割, Mean-shift 聚类算法, 链式遗传算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

胰腺癌的诊断非常重要,而细胞抹片显微图像的病理分析是其诊断的主要手段。图像的准确自动分割和分类是病理分析的重要环节,因此本文提出了一种新的胰腺细胞抹片显微图像自动分割与分类算法。在分割方面,首先采用多特征 Mean-shift 聚类算法(MFMS)定位细胞核区域;接着采用弹性数学形态学结合角点检测的去粘连模型(CSM)对粘连重叠细胞核进行去粘连处理,实现了分割的准确性和鲁棒性。在分类方面,首先针对分割的细胞核提取了 4 个形状特征和 138 个不同颜色空间的纹理特征;然后结合支持向量机(SVM)和链式遗传算法(CAGA)实现封装式特征选择;最后将优选特征送入 SVM 进行分类,完成了胰腺细胞抹片显微图像的分类识别。本文采用了 15 幅图像一共 461 个细胞核进行测试。实验结果显示,本文算法可以实现不同类型的胰腺细胞抹片显微图像的自动分割与准确分类。就分割来说,本文算法可获得较高的正确率(93.46%±7.24%);就正常和癌变细胞的分类来说,本文算法可获得较高的分类正确率(96.55%±0.99%)、灵敏度(96.10%±3.08%)和特异度(96.80%±1.48%)

References

[1]  5. Ormarsson O T, Gudmundsdottir I, Marvik R. Diagnosis and treatment of gastric heterotopic pancreas. World J Surg, 2006, 30(9): 1682-1689.
[2]  6. Kobayashi N. Bioartificial pancreas for the treatment of diabetes. Cell Transplant, 2008, 17(1/2): 11-17.
[3]  8. Saif M W. New developments in the treatment of pancreatic cancer. Highlights from the " 44th ASCO Annual Meeting”. Chicago, IL, USA. May 30-June 3, 2008. JOP, 2008, 9(4): 391-397.
[4]  10. Kim K B, Lee S G, Kim G H. Nucleus extraction of uterine cervical Pap-Smears using marker information and watershed algorithm. Journal of Medical Imaging and Health Informatics, 2014, 4(1): 1-7.
[5]  12. Koyuncu C F, Durmaz I, Cetin A R, et al. A supervised learning model for live cell segmentation//2014 22nd Signal Processing and Communications Applications Conference (SIU). Trabzon, Turkey: IEEE, 2014: 1971-1974.
[6]  15. Li Kuan, Lu Zhi, Liu Wenyin, et al. Cytoplasm and nucleus segmentation in cervical smear images using Radiating GVF Snake. Pattern Recognit, 2012, 45(4): 1255-1264.
[7]  17. Malek J, Sebri A, Mabrouk S, et al. Automated breast cancer diagnosis based on GVF-Snake segmentation, wavelet features extraction and fuzzy classification. J Signal Process Syst, 2009, 55(1/3): 49-66.
[8]  22. Fukunaga K A, Hostetler L D. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, 1975, 21(1): 32-40.
[9]  23. Rodenacker K, Bengtsson E. A feature set for cytometry on digitized microscopic images. Anal Cell Pathol, 2003, 25(1): 1-36.
[10]  25. Li Yongming, Zeng Xiaoping, Han Liang, et al. Two coding based adaptive parallel co-genetic algorithm with double agents structure. Eng Appl Artif Intell, 2010, 23(4): 526-542.
[11]  24. Nielsen B, Albregtsen F, Danielsen H E. Statistical nuclear texture analysis in cancer research: a review of methods and applications. Crit Rev Oncog, 2008, 14(2/3): 89-164.
[12]  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015, 136(5): E359-E386.
[13]  2. Bray F, Ren Jiansong, Masuyer E, et al. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer, 2013, 132(5): 1133-1145.
[14]  3. 李伟冬, 贾林. 结直肠癌的社区筛查及早期诊治. 中华临床医师杂志(电子版), 2015, 9(5): 724-726.
[15]  4. Jefferson A L, Massaro J M, Beiser A S, et al. Inflammatory markers and neuropsychological functioning: the Framingham Heart Study. Neuroepidemiology, 2011, 37(1): 21-30.
[16]  7. 周传文, 李倩君. 超声内镜联合 EMR 或 ESD 在异位胰腺诊断和治疗中的作用. 世界华人消化杂志, 2010(32): 3476-3479.
[17]  9. Plissiti M E, Nikou C, Charchanti A. Combining shape, texture and intensity features for cell nuclei extraction in Pap smear images. Pattern Recognit Lett, 2011, 32(6): 838-853.
[18]  11. George Y M, Zayed H H, Roushdy M I, et al. Remote computer-aided breast cancer detection and diagnosis system based on cytological images. IEEE Systems Journal, 2014, 8(3): 949-964.
[19]  13. Niwas S I, Palanisamy P, Sujathan K, et al. Analysis of nuclei textures of fine needle aspirated cytology images for breast cancer diagnosis using Complex Daubechies wavelets. Signal Processing, 2013, 93(10, SI): 2828-2837.
[20]  14. Cengizler C, Guven M, Avci M. A fluid dynamics-based deformable model for segmentation of cervical cell images. Signal Image and Video Processing, 2014, 8(1): S21-S32.
[21]  16. Bamford P, Lovell B. Unsupervised cell nucleus segmentation with active contours. Signal Processing, 1998, 71(2): 203-213.
[22]  18. Kudo M, Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognit, 2000, 33(1): 25-41.
[23]  19. Filipczuk P, Fevens T, Krzyzak A, et al. Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans Med Imaging, 2013, 32(12): 2169-2178.
[24]  20. 王品, 胡先玲, 谢文宾, 等. 多尺度区域生长与去粘连模型的乳腺细胞分割. 仪器仪表学报, 2015, 36(7): 1653-1659.
[25]  21. Recky M, Leberl F. Windows detection using k-means in CIE-Lab color space// 2010 20th International Conference on Pattern Recognition. Istanbul, Turkey: IEEE, 2010: 356-359.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133