全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

三维打印颌骨支架的研究进展

DOI: doi:10.7507/1001-5515.201702030

Keywords: 三维打印, 组织工程, 支架, 颌骨修复

Full-Text   Cite this paper   Add to My Lib

Abstract:

口腔颌面部肿瘤、外伤等常造成大范围的颌骨缺损,导致患者面部畸形、语言和咀嚼功能障碍等,严重影响患者生活质量。三维打印(3DP),又名“增材制造”,是一类将材料逐层添加来制造三维物体的技术。利用三维打印并结合影像数据、计算机设计和个性化制造颌骨修复支架,可以对复杂形态的颌骨缺损进行精确的修复重建,相对于传统的颌骨修复方式具有独特的优势,成为近年来颌骨组织工程支架研究的热点。本文就三维打印颌骨支架在颌骨修复中的应用作一综述,为临床上颌骨缺损的修复提供新思路

References

[1]  1. Obregon F, Vaquette C, Ivanovski S, et al. Three-Dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res, 2015, 94(9, 2): 143S-152S.
[2]  2. Zhang Yali, Xia Lunguo, Zhai Dong, et al. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis. Nanoscale, 2015, 7(45): 19207-19221.
[3]  3. Roohani-Esfahani S I, Newman P, Zreiqat H. Defects of 3D printed scaffolds with a mechanical strength comparable to cortical bone repair large fabrication. Sci rep, 2016, 6: 19468.
[4]  4. Murphy S V, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol, 2014, 32(8): 773-785.
[5]  5. Inzana J A, Olvera D, Fuller S M, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials, 2014, 35(13): 4026-4034.
[6]  6. Gaetani R, Feyen D A, Verhage V, et al. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials, 2015, 61: 339-348.
[7]  7. Chen C H, Shyu V B, Chen J P, et al. Selective laser sintered poly-epsilon-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication, 2014, 6(1): 015004.
[8]  8. Guo Ruijing, Lu Sichang, Page J M, et al. Fabrication of 3D scaffolds with precisely controlled substrate modulus and pore size by templated-fused deposition modeling to direct osteogenic differentiation. Adv Healthc Mater, 2015, 4(12): 1826-1832.
[9]  9. Russias J, Saiz E, Deville S, et al. Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. J Biomed Mater Res A, 2007, 83A(2): 434-445.
[10]  10. 张人佶, 颜永年, 林峰, 等. 低温快速成形与绿色制造. 制造技术与机床, 2008(4): 71-75.
[11]  11. Johnson C, Sheshadri P, Ketchum J M, et al. In vitro characterization of design and compressive properties of 3D-biofabricated/decellularized hybrid grafts for tracheal tissue engineering. J Mech Behav Biomed Mater, 2016, 59: 572-585.
[12]  12. Tarafder S, Dernell W S, Bandyopadhyay A A. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: Mechanical properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res B Appl Biomater, 2015, 103(3): 679-690.
[13]  13. 潘周娴, 陈适, 刘巍, 等. 医学三维打印材料分类及应用介绍. 基础医学与临床, 2015, 35(5): 702-706.
[14]  14. Eshraghi S, Das S. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone–hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater, 2012, 8(8): 3138-3143.
[15]  15. Fan Jiabing, Park H, Lee M K, et al. Adipose-Derived stem cells and BMP-2 delivery in Chitosan-Based 3D constructs to enhance bone regeneration in a rat mandibular defect model. Tissue Eng Part A, 2014, 20(15/16): 2169-2179.
[16]  16. 曹帅帅, 周苗, Miranda, 等. 三维打印 β-TCP 颌骨修复支架的生物学评价. 口腔医学研究, 2017, 33(7): 712-716.
[17]  17. 袁景, 甄平, 赵红斌. 高性能多孔 β-磷酸三钙骨组织工程支架的 3D 打印. 中国组织工程研究, 2014(43): 6914-6921.
[18]  18. 胡堃, 危岩, 李路海, 等. 3D 打印技术在生物医用材料领域的应用. 新材料产业, 2014(8): 33-39.
[19]  19. Qin Ling, Yao Dong, Zheng Lizhen, et al. Phytomolecule icaritin incorporated PLGA/TCP scaffold for steroid-associated osteonecrosis: Proof-of-concept for prevention of hip joint collapse in bipedal emus and mechanistic study in quadrupedal rabbits. Biomaterials, 2015, 59: 125-143.
[20]  20. Kim T H, Yun Y P, Park Y E, et al. In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 releasing PCL/PLGA scaffolds. Biomed Mater, 2014, 9(2): 025008.
[21]  21. 朱明, 柴岗, 李青峰. 3-D 打印技术在下颌前突畸形治疗中的应用. 中国修复重建外科杂志, 2014(3): 296-299.
[22]  22. 鄢荣曾, 胡敏. 颞下颌关节三维有限元建模相关因素分析. 医用生物力学, 2016, 31(2): 182-187.
[23]  23. Shim J H, Yoon M C, Jeong C M, et al. Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit. Biome Mater, 2014, 9(6): 065006.
[24]  24. Ou Kengliang, Hosseinkhani H. Development of 3D in vitro technology for medical applications. Int J Mol Sci, 2014, 15(10): 17938-17962.
[25]  25. Long Teng, Yang Jun, Shi Shanshan, et al. Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering. J Biomed Mater Res B Appl Biomater, 2015, 103(7): 1455-1464.
[26]  26. Lee J Y, Choi B, Wu B, et al. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication, 2013, 5(4): 045003.
[27]  27. Abarrategi A, Moreno-Vicente C, Martínez-Vázquez F J, et al. Biological properties of solid free form designed ceramic scaffolds with BMP-2: in vitro and in vivo evaluation. PLoS One, 2012, 7(3): e34117.
[28]  28. Rasperini G, Pilipchuk S P, Flanagan C L, et al. 3D-printed Bioresorbable Scaffold for Periodontal Repair. J Dent Res, 2015, 94(9, 2): 153S-157S.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133