全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于脑网络连接的实时功能磁共振成像神经反馈技术研究进展

DOI: doi:10.7507/1001-5515.201605037

Keywords: 神经反馈, 实时功能磁共振成像, 自主调节, 脑网络连接

Full-Text   Cite this paper   Add to My Lib

Abstract:

实时功能磁共振成像(rt-fMRI)技术的发展为基于脑血液动力学水平的神经反馈技术提供了基础,并为认知神经科学的研究带来新的机遇与挑战。随着大脑高级神经机制研究的深入,基于 rt-fMRI 的神经反馈技术正从早期单一脑区的调节向更符合人脑功能活动的脑网络连接的调节发展,并有望成为 rt-fMRI 神经反馈的发展趋势。文中首先对基于 rt-fMRI 的神经反馈技术的基本原理和发展情况进行了介绍,然后重点讨论了基于脑网络连接的 rt-fMRI 神经反馈技术的研究现状,包括研究思路、实验方法和研究结论等,最后对该领域发展存在的问题进行了讨论和展望

References

[1]  10. Thibault R T, Lifshitz M, Birbaumer N, et al. Neurofeedback, self-regulation, and brain imaging: clinical science and fad in the service of mental disorders. Psychother Psychosom, 2015, 84(4): 193-207.
[2]  11. Cannon R L. Editorial perspective: Defining neurofeedback and its functional processes. NeuroRegulation, 2015, 2(2): 60-69.
[3]  12. Linden D E. Neurofeedback and networks of depression. Dialogues Clin Neurosci, 2014, 16(1): 103-112.
[4]  13. Ruiz S, Lee S, Soekadar S R, et al. Acquired self-control of insula cortex modulates emotion recognition and brain network connectivity in schizophrenia. Hum Brain Mapp, 2013, 34(1): 200-212.
[5]  14. Mulders P C, van Eijndhoven P F, Schene A H, et al. Resting-state functional connectivity in major depressive disorder: A review. Neurosci Biobehav Rev, 2015, 56: 330-344.
[6]  15. Jie Biao, Zhang Daoqiang, Wee C Y, et al. Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification. Hum Brain Mapp, 2014, 35(7): 2876-2897.
[7]  16. 吕柄江, 赵小杰, 姚力, 等. 实时功能磁共振成像及其应用. 科学通报, 2014, 59(2): 195-209.
[8]  17. Cox R W, Jesmanowicz A, Hyde J S. Real-time functional magnetic resonance imaging. Magn Reson Med, 1995, 33(2): 230-236.
[9]  18. Weiskopf N, Veit R, Erb M, et al. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): Methodology and exemplary data. Neuroimage, 2003, 19(3): 577-586.
[10]  19. Sulzer J, Haller S, Scharnowski F, et al. Real-time fMRI neurofeedback: Progress and challenges. Neuroimage, 2013, 76(1): 386-399.
[11]  20. 李椋. 基于实时功能磁共振成像的脑机接口技术研究. 郑州: 信息工程大学, 2014.
[12]  21. Brühl A B, Scherpiet S, Sulzer J, et al. Real-time neurofeedback using functional MRI could improve down-regulation of amygdala activity during emotional stimulation: A proof-of-concept study. Brain Topogr, 2014, 27(1): 138-148.
[13]  22. deCharms R C, Christoff K, Glover G H, et al. Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage, 2004, 21(1): 436-443.
[14]  23. Li Baojuan, Liu Li, Friston K J, et al. A treatment-resistant default mode subnetwork in major depression. Biol Psychiatry, 2013, 74(1): 48-54.
[15]  24. 胡德文, 沈辉. 脑磁共振影像数据时空分析. 北京: 科学出版社, 2014: 133-176.
[16]  25. Zotev V, Phillips R, Young K D, et al. Prefrontal control of the amygdala during real-time fMRI neurofeedback training of emotion regulation. PLoS One, 2013, 8(11): e79184.
[17]  26. Paret C, Ruf M, Gerchen M F, et al. fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity. Neuroimage, 2016, 125: 182-188.
[18]  27. Kadosh K C, Luo Qiang, de Burca C, et al. Using real-time fMRI to influence effective connectivity in the developing emotion regulation network. Neuroimage, 2016, 125: 616-626.
[19]  28. Ruiz S, Rana M, Sass K, et al. Brain network connectivity and behaviour enhancement: a fMRI-BCI study//17th Annual Meeting of the Organization for Human Brain Mapping. Quebec City: The Organization for Human Brain Mapping, 2011.
[20]  29. Megumi F, Yamashita A, Kawato M, et al. Functional MRI neurofeedback training on connectivity between two regions induces long-lasting changes in intrinsic functional network. Front Hum Neurosci, 2015, 9: 160.
[21]  30. Koush Y, Rosa M J, Robineau F, et al. Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI. Neuroimage, 2013, 81: 422-430.
[22]  31. Koush Y, Meskaldji D E, Pichon S, et al. Learning control over emotion networks through connectivity-based neurofeedback. Cereb Cortex, 2017, 27(2): 1193-1202.
[23]  32. Ruiz S, Buyukturkoglu K, Rana M, et al. Real-time fMRI brain computer interfaces: Self-regulation of single brain regions to networks. Biol Psychol, 2014, 95(SI): 4-20.
[24]  33. 童莉, 王理军, 郑载舟, 等. 基于多体素模式分析的 fMRI 视觉解码研究综述. 信息工程大学学报, 2015, 16(1): 66-72.
[25]  34. Li Zhonglin, Tong Li, Guan Min, et al. Altered resting-state amygdala functional connectivity after real-time fMRI emotion self-regulation training. Biomed Res Int, 2016, 2016: 1-8.
[26]  35. Li Zhonglin, Tong Li, Wang Linyuan, et al. Self-regulating positive emotion networks by feedback of multiple emotional brain states using real-time fMRI. Exp Brain Res, 2016, 234(12): 3575-3586.
[27]  36. Li Xiaofei, Yao Li, Ye Qing, et al. Online spatial normalization for real-time fMRI. PLoS One, 2014, 9(7): e103302.
[28]  1. Bargmann C I, Newsome W T. The brain research through advancing innovative neurotechnologies (BRAIN) initiative and neurology. JAMA Neurol, 2014, 71(6): 675-676.
[29]  2. Brühl A B. Making sense of real-time functional magnetic resonance imaging (rtfMRI) and rtfMRI neurofeedback. Int J Neuropsychopharmacol, 2015, 18(6): pyv020..
[30]  3. Thibault R T, Lifshitz M, Raz A. The self-regulating brain and neurofeedback: Experimental science and clinical promise. Cortex, 2016, 74: 247-261.
[31]  4. Stoeckel L E, Garrison K A, Ghosh S, et al. Optimizing real time fMRI neurofeedback for therapeutic discovery and development. Neuroimage Clin, 2014, 5: 245-255.
[32]  5. Birbaumer N, Ruiz S, Sitaram R. Learned regulation of brain metabolism. Trends Cogn Sci, 2013, 17(6): 295-302.
[33]  6. Scheinost D, Stoica T, Saksa J, et al. Orbitofrontal cortex neurofeedback produces lasting changes in contamination anxiety and resting-state connectivity. Transl Psychiatry, 2013, 3(4): e250.
[34]  7. Robineau F, Rieger S W, Mermoud C, et al. Self-regulation of inter-hemispheric visual cortex balance through real-time fMRI neurofeedback training. Neuroimage, 2014, 100: 1-14.
[35]  8. Arns M, Heinrich H, Strehl U. Evaluation of neurofeedback in ADHD: The long and winding road. Biol Psychol, 2014, 95(SI): 108-115.
[36]  9. Esmail S, Linden D E J. Neural networks and neurofeedback in Parkinson's disease. NeuroRegulation, 2014, 1(3/4): 240.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133