5. LACASA L, GóMEZ-GARDE?ES J. Correlation dimension of complex networks[J]. Phys Rev Lett, 2013, 110(16): 168703.
[3]
6. 王俊, 马千里. Multiscale entropy based study of the pathological time series[J]. ChinPhysB, 2008, 17(12): 4424-4427.
[4]
7. 吴莎. 基于改进的符号转移熵的生理电信号耦合网络研究[D].南京:南京邮电大学,2014.
[5]
1. ?IASEMIDIS L D, SHIAU D S, CHAOVALITWONGSE W, et al. Adaptive epileptic seizure prediction system[J]. IEEE Trans Biomed Eng, 2003, 50(5): 616-627.
[6]
2. FISHER R S, BOAS W V, BLUME W, et al. Epileptic seizures and epilepsy: Definitions proposed by the International League against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)[J]. Epilepsia, 2005, 46(4): 470-472.
9. PESSOA L. Understanding brain networks and brain organization[J]. Phys Life Rev, 2014, 11(3): 400-435.
[10]
10. ZHAO Yi, WENG Tongfeng, YE Shengkui. Geometrical invariability of transformation between a time series and a complex network[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2014, 90(1): 012804.
[11]
11. YUTAKA S, TOHRU I, TAKAOMI S. From networks to time series[J]. Phys Rev Lett, 2012, 109(15): 684-691.
[12]
12. WENG Tongfeng, ZHAO Yi, SMALL M, et al. Time-series analysis of networks: exploring the structure with random walks[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2014, 90(2): 022804.
[13]
13. SCHREIBER T, SCHMITZ A. Surrogate time series[J]. Physica D, 2000, 142(3/4): 346-382.
[14]
14. STAM C J. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field[J]. Clin Neurophysiol, 2005, 116(10): 2266-2301.
[15]
15. TAKENS F. Dynamical systems and turbulence,warwick 1980[M]. Berlin: Springer Berlin Heidelberg, 1981: 366-381.
[16]
16. KIM H S, EYKHOLT R, SALAS J D. Nonlinear dynamics, delay times, and embedding Windows[J]. Physica D, 1999, 127(1/2): 48-60.
[17]
17. DONNER R V, SMALL M, DONGES J F, et al. Recurrence-based time series analysis by means of complex network methods[J]. Int J Bifurcat Chaos, 2011, 21(4): 1019-1046.