1. ?ATABAY E P, ATABAY E C, CRUZ L C. Cryotop and solid surface vitrification cryodevices are suitable for the cryopreservation of in vitro-matured water buffalo(bubalus bubalis L.)oocytes[J]. Philippine Journal of Veterinary Medicine, 2013, 50(1):24-33.
[2]
2. ALMANSOORI K A, PRASAD V, FORBES J F, et al. Cryoprotective agent toxicity interactions in human articular chondrocytes[J]. Cryobiology, 2012, 64(3):185-191.
[3]
3. INOUE M, OKONOGI A, TERAO K, et al. Cell culture on MEMS materials in microenvironment limited by a physical condition[J]. Micro Nano Lett, 2012, 7(8):725-728.
[4]
4. HUANG S B, WU M H, WANG S S, et al. Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays[J]. Biomed Microdevices, 2011, 13(3):415-430.
[5]
5. INAMDAR N K, BORENSTEIN J T. Microfluidic cell culture models for tissue engineering[J]. Curr Opin Biotechnol, 2011, 22(5):681-689.
[6]
6. REN Y, CHOW L M, LEUNG W W. Cell culture using centrifugal microfluidic platform with demonstration on Pichia pastoris[J]. Biomed Microdevices, 2013, 15(2):321-337.
[7]
7. CAO Z, CHEN F, BAO N, et al. Droplet sorting based on the number of encapsulated particles using a solenoid valve[J]. Lab Chip, 2013, 13(1):171-178.
[8]
8. QIN W, SCHMIDT L, YANG X, et al. Laser guidance-based cell detection in a microfluidic biochip[J]. J Biomed Opt, 2013, 18(6):060502.
[9]
9. MU X, ZHENG W, SUN J, et al. Microfluidics for manipulating cells[J]. Small, 2013, 9(1):9-21.
[10]
10. VICKERS D L, HINCAPIE M, HANCOCK W S, et al. Lectin-mediated microfluidic capture and release of leukemic lymphocytes from whole blood[J]. Biomed Microdevices, 2011, 13(3):565-571.
[11]
11. MARTINEZ C J, KIM J W, YE C, et al. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles[J]. Macromol Biosci, 2012, 12(7):946-951.
[12]
12. FAN Y, XU F, HUANG G, et al. Single neuron capture and axonal development in three-dimensional microscale hydrogels[J]. Lab Chip, 2012, 12(22):4724-4731.
[13]
13. METTO E C, EVANS K, BARNEY P, et al. An integrated microfluidic device for monitoring changes in nitric oxide production in single T-lymphocyte (Jurkat) cells[J]. Anal Chem, 2013, 85(21):10188-10195.
[14]
14. LAM B, FANG Z, SARGENT E H, et al. Polymerase chain reaction-free, sample-to-answer bacterial detection in 30 minutes with integrated cell lysis[J]. Anal Chem, 2012, 84(1):21-25.
[15]
16. MERNIER G, MARTINEZ-DUARTE R, LEHAL R, et al. Very high throughput electrical cell lysis and extraction of intracellular compounds using 3D Carbon electrodes in Lab-on-a-chip devices[J]. Micromachines, 2012, 3(3):574-581.
[16]
17. JEN C P, AMSTISLAVSKAYA T G, LIU Y H, et al. Single-cell electric lysis on an electroosmotic-driven microfluidic chip with arrays of microwells[J]. Sensors (Basel), 2012, 12(6):6967-6977.
[17]
18. KIM J, HONG J W, KIM D P, et al. Nanowire-integrated microfluidic devices for facile and reagent-free mechanical cell lysis[J]. Lab Chip, 2012, 12(16):2914-2921.
[18]
15. JHA S K, CHAND R, HAN D, et al. An integrated PCR microfluidic chip incorporating aseptic electrochemical cell lysis and capillary electrophoresis amperometric DNA detection for rapid and quantitative genetic analysis[J]. Lab Chip, 2012, 12(21):4455-4464.
[19]
19. CHEN H H, SHEN H, HEIMFELD S, et al. A microfluidic study of mouse dendritic cell membrane transport properties of water and cryoprotectants[J]. Int J Heat Mass Transf, 2008, 51(23/24):5687-5694.
[20]
20. WANG J, ZHU K, ZHAO G, et al. Dual dependence of cryobiogical properties of Sf21 cell membrane on the temperature and the concentration of the cryoprotectant[J]. PLoS One, 2013, 8(9):e72836.
[21]
21. HUBEL A. Advancing the preservation of cellular therapy products[J]. Transfusion, 2011, 51(Suppl 4):82S-86S.
[22]
22. FLEMING K K, LONGMIRE E K, HUBEL A. Numerical characterization of diffusion-based extraction in cell-laden flow through a microfluidic Channel[J]. J Biomech Eng, 2007, 129(5):703-711.
[23]
23. MATA C, LONGMIRE E K, MCKENNA D H, et al. Experimental study of diffusion-based extraction from a cell suspension[J]. Microfluid Nanofluidics, 2008, 5(4):529-540.
[24]
24. MATA C, LONGMIRE E, MCKENNA D, et al. Cell motion and recovery in a two-stream microfluidic device[J]. Microfluid Nanofluidics, 2010, 8(4):457-465.
[25]
29. ZOU Y, YIN T, CHEN S, et al. On-chip cryopreservation:a novel method for ultra-rapid cryoprotectant-free cryopreservation of small amounts of human spermatozoa[J]. PLoS One, 2013, 8(4):e61593.
[26]
30. ZHOU X M, LIU Z, LIANG X M, et al. Theoretical investigations of a novel microfluidic cooling/warming system for cell vitrification cryopreservation[J]. Int J Heat Mass Transf, 2013, 65:381-388.
[27]
25. HANNA J, HUBEL A, LEMKE E. Diffusion-based extraction of DMSO from a cell suspension in a three stream, vertical microchannel[J]. Biotechnol Bioeng, 2012, 109(9):2316-2324.
[28]
26. SONG Y S, MOON S, HULLI L, et al. Microfluidics for cryopreservation[J]. Lab Chip, 2009, 9(13):1874-1881.
[29]
27. HEO Y S, LEE H J, HASSELL B A, et al. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform[J]. Lab Chip, 2011, 11(20):3530-3537.
[30]
28. LI S, LIU W, LIN L. On-Chip cryopreservation of living cells[J]. Journal of the Association for Laboratory Automation, 2010, 15(2):99-106.