全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

纳米拓扑结构在间充质干细胞构建工程化组织中的应用与发展

DOI: doi:10.7507/1001-5515.201705077

Keywords: 纳米拓扑结构, 间充质干细胞, 组织工程, 纳米技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

组织工程被认为是未来针对工程化组织缺损进行修复及功能性重建的有效手段之一。仿生生物支架为种子细胞的增殖分化和组织再生提供了理想的支持与空间,而这些支架的表面特性特别是表面纳米拓扑结构成为决定植入能否成功的关键。间充质干细胞(MSC)被公认为理想的组织工程种子细胞,而纳米拓扑结构可以调节 MSC 的细胞行为和分化潜能。本文综述了近年来纳米拓扑结构在 MSC 构建工程化组织中的应用与发展

References

[1]  10. Teo B K, Wong S T, Lim C K, et al. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano, 2013, 7(6): 4785-4798.
[2]  11. Biggs M J, Richards R G, Gadegaard N, et al. Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J Biomed Mater Res A, 2009, 91(1): 195-208.
[3]  12. Loger K, Engel A, Haupt J, et al. Cell adhesion on NiTi thin film sputter-deposited meshes. Mater Sci Eng C Mater Biol Appl, 2016, 59: 611-616.
[4]  13. Lin Manping, Wang Huaiyu, Ruan Changshun, et al. Adsorption force of fibronectin on various surface chemistries and its vital role in osteoblast adhesion. Biomacromolecules, 2015, 16(3): 973-984.
[5]  14. Mcbeath R, Pirone D M, Nelson C M, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell, 2004, 6(4): 483-495.
[6]  15. de Peppo G M, Agheli H, Karlsson C, et al. Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro. Int J Nanomedicine, 2014, 9(1): 2499-2515.
[7]  16. Luo Yu, Shen He, Fang Yongxiang, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces, 2015, 7(11): 6331-6339.
[8]  17. Hosseinkhani H, Hosseinkhani M, Kobayashi H. Proliferation and differentiation of mesenchymal stem cells using self-assembled peptide amphiphile nanofibers. Biomed Mater, 2006, 1(1): 8-15.
[9]  18. Xiao Qianru, Zhang Ning, Wang Xi, et al. Oriented surface nanotopography promotes the osteogenesis of mesenchymal stem cells. Adv Mater Interface, 2016. DOI: 10.1002/admi.201600652.
[10]  19. Abagnale G, Steger M, Nguyen V H, et al. Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials, 2015, 61: 316-326.
[11]  20. McCafferty M M, Burke G A, Meenan B J. Calcium phosphate thin films enhance the response of human mesenchymal stem cells to nanostructured Titanium surfaces. J Tissue Eng, 2014, 5: 2041731414537513. DOI: 10.1177/2041731414537513.
[12]  21. Baboolal T G, Mastbergen S C, Jones E, et al. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction. Ann Rheum Dis, 2016, 75(5): 908-915.
[13]  22. Toh W S, Lai R C, Hui J H, et al. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Semin Cell Dev Biol, 2017, 67: 56-64.
[14]  23. Gao Lin, Mcbeath R, Chen C S. Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells, 2010, 28(3): 564-572.
[15]  24. Zhong Weiliang, Zhang Weiguo, Wang Shouyu, et al. Regulation of fibrochondrogenesis of mesenchymal stem cells in an integrated microfluidic platform embedded with biomimetic nanofibrous scaffolds. PLoS One, 2013, 8(4): e61283.
[16]  25. Wu Yingnan, Law J B, He Aiyu, et al. Substrate topography determines the fate of chondrogenesis from human mesenchymal stem cells resulting in specific cartilage phenotype formation. Nanomedicine, 2014, 10(7): 1507-1516.
[17]  26. Trujillo N A, Popat K C. Increased adipogenic and decreased chondrogenic differentiation of adipose derived stem cells on nanowire surfaces. Materials (Basel, Switzerland), 2014, 7(4): 2605-2630.
[18]  27. Salmasi S, Kalaskar D M, Yoon W W, et al. Role of nanotopography in the development of tissue engineered 3D organs and tissues using mesenchymal stem cells. World J Stem Cells, 2015, 7(2): 266-280.
[19]  28. Sundaramurthi D, Krishnan U M, Sethuraman S. Electrospun nanofibers as scaffolds for skin tissue engineering. Polymer Reviews, 2014, 54(2): 348-376.
[20]  29. Kim J, Kim H N, Lim K T, et al. Designing nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells. Sci Rep, 2013, 3: 3552.
[21]  30. Jin G, Prabhakaran M P, Ramakrishna S. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Acta Biomater, 2011, 7(8): 3113-3122.
[22]  31. Li Jingan, Qin Wei, Zhang Kun, et al. Controlling mesenchymal stem cells differentiate into contractile smooth muscle cells on a TiO2 micro/nano interface: Towards benign pericytes environment for endothelialization. Colloids Surf B Biointerfaces, 2016, 145: 410-419.
[23]  32. Moghadasi Boroujeni S, Mashayekhan S, Vakilian S, et al. The synergistic effect of surface topography and sustained release of TGF-β1 on myogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A, 2016, 104(7): 1610-1621.
[24]  33. Khattak M, Pu Fanrong, Curran J M, et al. Human mesenchymal stem cell response to poly(ε-caprolactone/poly(methyl methacrylate) demixed thin films. J Mater Sci Mater Med, 2015, 26(5): 178.
[25]  1. Jiang Weicheng, Cheng Yuhao, Yen M H, et al. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials, 2014, 35(11): 3607-3617.
[26]  2. Yang Lei, Liu Haipei, Lin Yuan. Biomaterial nanotopography-mediated cell responses: experiment and modeling. Int J Smart Nano Mater, 2015, 5(4): 227-256.
[27]  3. Chen Weiqiang, Shao Yue, Li Xiang, et al. Nanotopographical surfaces for stem cell fate control: Engineering mechanobiology from the Bottom. Nano Today, 2014, 9(6): 759-784.
[28]  4. Ao Chenghong, Niu Yan, Zhang Ximu, et al. Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int J Biol Macromol, 2017, 97: 568-573.
[29]  5. Shahnavazi M, Ketabi M A, Fekrazad R, et al. Fabrication of Chitosan-nano hydroxyapatite scaffold for dental tissue engineering. Key Eng Mater, 2017, 720: 223-227.
[30]  6. Atak B H, Buyuk B, Huysal M, et al. Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydr Polym, 2017, 164: 200-213.
[31]  7. Oseni A O, Butler P E, Seifalian A M. The application of POSS nanostructures in cartilage tissue engineering: the chondrocyte response to nanoscale geometry. J Tissue Eng Regen Med, 2015, 9(11): E27-E38.
[32]  8. Zulkifli F H, Hussain F S J, Zeyohannes S S, et al. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Mater Sci Eng C Mater Biol Appl, 2017, 79: 151-160.
[33]  9. Yang H S, Lee B, Tsui J H, et al. Electroconductive nanopatterned substrates for enhanced myogenic differentiation and maturation. Adv Healthc Mater, 2016, 5(1): 137-145.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133