光声显微成像兼具高光学组织对比度,以及超声的高穿透深度和高空间分辨率的优点。但一方面在光声显微成像中,组织深层目标易被浅表目标屏蔽,另一方面其横向分辨率与焦深的矛盾一直限制了光声显微的成像质量。针对这两个问题,本实验搭建了一套基于超声分辨的光声显微成像系统。其采用一种非共轴的照明-探测方式来减少浅层组织对深层信息的影响,并且采用一种新的焦区积分算法来进行数据的处理,结合多次纵向变焦扫描来实现深层组织的高分辨探测。仿体实验表明,该方法可以在不同纵向深度上保持约 0.6 mm 的横向分辨率,与理论值相接近。裸鼠肿瘤成像结果表明,本文所提出的方法可以比普通的背向探测声聚焦光声显微成像方法在深度方向上获取更多的信息。随着超快脉冲激光和高速扫描方式的发展,本文所提出的方法有望在脑部血管成像、宫颈癌内窥成像、浅表肿瘤成像等方面得到较好的应用
References
[1]
1. Telenkov S A, Mandelis A. Fourier-domain biophotoacoustic subsurface depth selective amplitude and phase imaging of turbid phantoms and biological tissue. J Biomed Opt, 2006, 11(4): 044006.
[2]
2. Telenkov S A, Mandelis A. Photothermoacoustic imaging of biological tissues: maximum depth characterization comparison of time and frequency-domain measurements. J Biomed Opt, 2009, 14(4): 044025.
[3]
3. Rosencwaig A, Gersho A. Theory of the photoacoustic effect with solids. J Appl Phys, 1976, 47(1): 64-69.
[4]
4. Xie Zhixing, Roberts W, Carson P, et al. Evaluation of bladder microvasculature with high-resolution photoacoustic imaging. Opt Lett, 2011, 36(24): 4815-4817.
[5]
5. Aguirre A, Guo Puyun, Gamelin J, et al. Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization. J Biomed Opt, 2009, 14(5): 054014.
[6]
6. Aguirre A, Ardeshirpour Y, Sanders M M, et al. Potential role of coregistered photoacoustic and ultrasound imaging in ovarian cancer detection and characterization. Transl Oncol, 2011, 4(1): 29-37.
[7]
7. Yang J M, Favazza C, Chen Ruimin, et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat Med, 2012, 18(8): 1297-1302.
[8]
8. Zackrisson S, van de Ven S M, Gambhir S S. Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res, 2014, 74(4): 979-1004.
10. Peng Kuan, He Ling, Wang Bo, et al. Detection of cervical cancer based on photoacoustic imaging-the in-vitro results. Biomed Opt Express, 2015, 6(1): 135-143.
[11]
11. Zhang H F, Wang Jing, Wei Qing, et al. Collecting back-reflected photons in photoacoustic microscopy. Opt Express, 2010, 18(2): 1278-1282.
[12]
12. Zhang H F, Maslov K, Stoica G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol, 2006, 24(7): 848-851.
[13]
13. Zhang Chi, Maslov K, Wang L V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. Opt Lett, 2010, 35(19): 3195-3197.
[14]
14. Hu Song, Maslov K, Wang L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett, 2011, 36(7): 1134-1136.
[15]
15. Stein E W, Maslov K, Wang L V. Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy. J Appl Phys, 2009, 105(10): 102027.
[16]
16. Kneipp M, Turner J, Estrada H, et al. Effects of the murine skull in optoacoustic brain microscopy. J Biophotonics, 2016, 9(1/2): 117-123.
[17]
17. Ning Bo, Sun Naidi, Cao Rui, et al. Ultrasound-aided multi-parametric photoacoustic microscopy of the mouse brain. Sci Rep, 2015, 5: 18775.
[18]
18. Cai De, Li Zhongfei, Chen S L. In vivo deconvolution acoustic-resolution photoacoustic microscopy in three dimensions. Biomed Opt Express, 2016, 7(2): 369-380.
[19]
19. Chen S L, Guo L J, Wang Xueding. All-optical photoacoustic microscopy. Photoacoustics, 2015, 3(4): 143-150.
22. Chang V T, Cartwright P S, Bean S M, et al. Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy. Neoplasia, 2009, 11(4): 325-332.