全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于心脏电影磁共振图像的右心室自动分割研究进展

DOI: doi:10.7507/1001-5515.20160190

Keywords: 心脏电影磁共振图像, 右心室分割, 评价方法, 研究进展

Full-Text   Cite this paper   Add to My Lib

Abstract:

心脏疾病严重威胁着人类健康。近年来,临床心脏疾病诊断除了评估左心室功能外,也越来越多地开始对右心室功能进行评估。尤其当左心室射血分数较低时,右心室功能评估显得更为重要。右心室分割是评估其功能的前提。然而,心脏右心室心肌薄,结构复杂且个体差异大,一直是分割的难点。由于心脏电影磁共振图像是如今临床评估心室功能的金标准,本文对基于该图像典型的右心室分割方法、评价方法及发展前景进行了综述性描述,以便相关领域研究者更好地了解右心室分割研究进展

References

[1]  2. CAUDRON J, FARES J, VIVIER P, et al. Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac MRI in patients with acquired heart disease[J]. EurRadiol, 2011, 21(10): 2111-2120.
[2]  3. MAHAPATRA D. An automated approach to cardiac RV segmentation from MRI using learned semantic information and graph Cuts[J]. J Digit Imaging, 2014, 27(6): 1-18.
[3]  4. GROSGEORGE D, PETITJEAN C, CAUDRON J A, et al. Automatic cardiac ventricle segmentation in MR images: a validation study[J]. Int J Comput Assist RadiolSurg, 2011, 6(5): 573-581.
[4]  18. OU Y, DOSHI J, ERUS G, et al. Multi-atlas segmentation of the cardiac MR right ventricle[C/OL].(2016-04-1)[2016-08-30]http://www.nmr.mgh.harvard.edu/~you2/publications/MICCAI12_CARDIAC_RV_SBIA_v3.pdf.
[5]  19. 张耀楠, 陈传慎,康雁.基于仿射传播聚类选择的多Atlas右心室精准分割[J].东北大学学报:自然科学版,2014,35(6):795-799.
[6]  20. PETITJEAN C, ZULUAGA M A, BAI Wenjia, et al. Right ventricle segmentation from cardiac MRI: a collation study[J]. Med Image Anal, 2015, 19(1): 187-202.
[7]  21. ZHENG S, JAYASUMANA S, ROMERA-PAREDES B, et al. Conditional random fields as recurrent neural networks[C]//IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015:1529-1537.
[8]  24. 曹贵宝. 随机森林和卷积神经网络在神经细胞图像分割中的应用研究[D].济南:山东大学,2014.
[9]  25. CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL].(2016-06-7)[2016-08-30] http://arxiv.org/pdf/1412.7062.pdf.
[10]  26. HUTTENLOCHER D P, KLANDERMAN G A, RUCKLIDGE W J. Comparing images using the Hausdorffdistance[J]. IEEE Trans Pattern Anal Mach Intell, 1993, 15(9): 850-863.
[11]  1. ?BAUR L. Magnetic resonance imaging: the preferred imaging method for evaluation of the right ventricle[J]. International Journal of Cardiovascular Imaging, 2008, 24(7): 699-700.
[12]  5. WANG Lijia, PEI Mengchao, CODELLA N C, et al. Left ventricle: fully automated segmentation based on spatiotemporal continuity and myocardium information in cine cardiac magnetic resonance imaging (LV-FAST)[J]. Biomed Res Int, 2015, 2015: 367583.
[13]  6. 刘鸿翔, 陈宇珂.基于图割和K聚类的CT图像分割[J].医疗卫生装备,2016,37(1):21-24.
[14]  7. 辛月兰. 基于图割的图像分割综述[J].微型电脑应用,2012,28(9):1-5, 8.
[15]  8. MAIER O M O, JIMéNEZ D, SANTOS A, et al. Segmentation of RV in 4D cardiac MR volumes using region-merging graph cuts[C]//2012 Computing in Cardiology. Krakow, Poland: IEEE, 2012: 697-700.
[16]  9. COCOSCO C A, NIESSEN W J, NETSCH T, et al. Automatic image-driven segmentation of the ventricles in cardiac cine MRI[J]. Journal of Magnetic Resonance Imaging, 2008, 28(2): 366-374.
[17]  10. AMIN Y, BANDAY S A, MIR A H. A comparative study on left and right endocardium segmentation using gradient vector field and adaptive diffusion flow algorithms[J]. International Journal of Bio-Science and Bio-Technology, 2016, 8(1): 105-120.
[18]  11. ABI-NAHED J, JOLLY M P, YANG G Z. Robust active shape models: A robust, generic and simple automatic segmentation tool[C]//LARSEN R, NIELSEN M, SPORRING J. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2006. Berlin Heidelberg: Springer Berlin Heidelberg, 2006:1-8.
[19]  12. CHUI H, RANGARAJAN A. A new algorithm for non-rigid point matching[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2000. Hilton Head Island, US: IEEE, 2000, 2: 44-51.
[20]  13. MITCHELL S C, LELIEVELDT B P, VAN DER GEEST R J, et al. Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MRimages[J]. IEEE Trans Med Imaging, 2001, 20(5): 415-423.
[21]  14. COOTES T F, TAYLOR C J, LANITIS A. Active shape models: Evaluation of a multi-resolution method for improving image search[C]//Proceedings of British Machine Vision Conference. York, UK, 1994: 327-338.
[22]  15. 曹一挥. 基于多图谱医学图像分割的技术研究[D].北京:中国科学院大学,2013.
[23]  16. HAN X, HOOGEMAN M S, LEVENDAG P C, et al. Atlas-based auto-segmentation of head and neck CT images[C]//METAXAS D, AXEL L, FICHTINGER G. International Conference on Medical Image Computing & Computer-assisted Intervention. Berlin, Heidelberg: Springer-Verlag, 2008: 434-441.
[24]  17. HUO J, WANG G, WU Q M J, et al. Label fusion for multi-atlas segmentation based on majority voting[C]//KAMEL M S, CAMPILHO A C, CAMPILHO A C. International Conference Image Analysis and Recognition. Niagara Falls, Canada: Springer International Publishing, 2015: 100-106.
[25]  22. KAMNITSAS K, LEDIG C, NEWCOMBE V F J, et al. Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation[EB/OL]. (2016-04-1)[2016-08-30] http://arxiv.org/pdf/1603.05959.pdf.
[26]  23. TRAN P V. A Fully Convolutional Neural Network for Cardiac Segmentation in Short-Axis MRI[EB/OL]. (2016-04-2)[2016-08-30]http://arxiv.org/pdf/1604.00494.pdf.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133