全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Westerhof 阻力器计算阻值的一种校正方法

DOI: doi:10.7507/1001-5515.201703020

Keywords: 人体血液模拟循环系统, Westerhof 阻力器, 泊肃叶方程, 阻值, 模拟仿真

Full-Text   Cite this paper   Add to My Lib

Abstract:

人体血液模拟循环系统(MCS)的目标是重现心血管血流动力学的特性。Westerhof 阻力器在 MCS 中担任层流液阻器的角色,用来模拟心血管系统的外周阻力。Westerhof 阻力器的理论计算结果较实际的液阻值有较大的误差,如果将理论公式计算的液阻值当作实际的液阻值,那么精确度明显达不到设计目标和性能要求。为了减少阻力器液阻值理论计算结果与实际值之间的误差,本文提供了一种有效的 Westerhof 阻力器计算阻值的校正方法,并且开发了仿真模拟软件。仿真软件可以较为准确地预测毛细管数量、总长度、液阻值,降低和简化了设计阻力器的难度和复杂度,使得 Westerhof 阻力器制作更为精准,为各种循环模拟系统的构建提供了支持

References

[1]  1. Camp T A, Stewart K C, Figliola R S, et al. In vitro study of flow regulation for pulmonary insufficiency. J Biomech Eng, 2007, 129(2): 284-288.
[2]  2. 刘一, 杨明, 李世阳, 等. 简易模拟心血管系统的设计与控制. 生物医学工程学杂志, 2010, 27(1): 165-169.
[3]  3. Yoffe B, Vaysbeyn I, Urin Y, et al. Experimental study of a novel suture-less aortic anastomotic device. Eur J Vasc Endovasc Surg, 2007, 34(1): 79-86.
[4]  4. Lanzarone E, Vismara R, Fiore G B. Response to the letter to the editor: a new pulsatile volumetric device with biomorphic valves for the in vitro study of the cardiovascular system by M. B. Munir et al. Artificial Organs, 2011, 35(1): 97-98.
[5]  5. Ando M, Nishimura T, Takewa Y, et al. What is the ideal off-test trial for continuous-flow ventricular-assist-device explantation? Intracircuit back-flow analysis in a mock circulation model. J Artif Organs, 2011, 14(1): 70-73.
[6]  6. Tbowles C, Sshah S, Kazunobunishimura, et al. Development of mock circulation models for the assessment of counterpulsation systems. Cardiovasc Res, 1991, 25(11): 901-908.
[7]  7. 王成, 王惠荪, 金永安, 等. 利用简单多普勒流量计长期监测左心辅助泵的搏出量的探讨. 生物医学工程学杂志, 1987, 4(3): 170-177.
[8]  15. Ferrari G, De Lazzari C, Kozarski M, et al. A hybrid mock circulatory system: testing a prototype under physiologic and pathological conditions. ASAIO J, 2002, 48(5): 487-494.
[9]  17. 陈君楷. 心血管血流动力学. 成都: 四川教育出版社, 1990: 436-452.
[10]  14. Westerhof N, Lankhaar J-W, Westerhof B E. The arterial Windkessel. Med Biol Eng Comput, 2009, 47(2): 131-141.
[11]  16. Kung E O, Les A S, Medina F, et al. In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions. J Biomech Eng, 2011, 133(4): 041003.
[12]  12. Lanzarone E, Ruggeri F. Inertance estimation in a lumped-parameter hydraulic simulator of human circulation. J Biomech Eng, 2013, 135(6): 61012-61017.
[13]  8. Sharp M K, Dharmalingham R K. Development of a hydraulic model of the human systemic circulation. ASAIO J, 2000, 45(6): 535-540.
[14]  9. Westerhof N, Stergiopulos N, Noble M I M. Snapshots of Hemodynamics. America: Springer US, 2005: 14-39.
[15]  10. Westerhof N, Elzinga G, Sipkema P. An artificial arterial system for pumping hearts. J Appl Physiol, 1971, 31(5): 776-781.
[16]  11. Wolters B J B M, Emmer M, Rutten M C M, et al. Assessment of endoleak significance after endovascular repair of abdominal aortic aneurysms: A lumped parameter model. Med Eng Phys, 2007, 29(10): 1106-1118.
[17]  13. Lanzarone E, Vismara R, Fiore G B. A new pulsatile volumetric device with biomorphic valves for the in vitro study of the cardiovascular system. Artif Organs, 2009, 33(12): 1048-1062.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133