全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

不同功能残气量对可吸入颗粒物在人体肺腺泡区沉积影响的实验研究

DOI: doi:10.7507/1001-5515.201711054

Keywords: 肺腺泡, 可吸入颗粒物, 沉积, 功能残气量

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究可吸入颗粒物在肺腺泡内的沉积规律对于明确肺气肿等常见呼吸系统疾病的诱因和发展,以及优化临床治疗和预防方案具有重要意义。本文建立了能够模拟终末细支气管和肺腺泡颗粒物沉积的体外实验模型,在不同功能残气量模式下研究了不同粒径的可吸入颗粒物在肺腺泡内的沉积率。结果表明,颗粒物直径是影响颗粒物在肺腺泡沉积的重要因素,1 μm 左右的颗粒物沉积率最高。功能残气量增大,颗粒物沉积率显著降低。本文研究结果为肺气肿和尘肺等疾病的靶向吸入治疗提供了数据支撑和优化途径,建立的模型也为研究可吸入颗粒物在肺腺泡内的沉积规律提供了一种可行的体外实验模型

References

[1]  2. Tsuda A, Henry F S, Butler J P. Chaotic mixing of alveolated duct flow in rhythmically expanding pulmonary acinus. J Appl Physiol, 1995, 79(3): 1055-1063.
[2]  5. Ma Baoshun, Darquenne C. Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions. J Appl Physiol, 2011, 110(5): 1271-1282.
[3]  11. Haefeli-Bleuer B, Weibel E R. Morphometry of the human pulmonary acinus. Anat Rec, 1988, 220(4): 401-414.
[4]  1. Fernández Tena A, Casan Clarà P. Deposition of inhaled particles in the lungs. Arch Bronconeumol, 2012, 48(7): 240-246.
[5]  3. Darquenne C, Harrington L, Prisk G K. Alveolar duct expansion greatly enhances aerosol deposition: a three-dimensional computational fluid dynamics study. Philos Trans A Math Phys Eng Sci, 2009, 367(1896): 2333-2346.
[6]  4. Sznitman J, Heimsch T, Wildhaber J H, et al. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree. J Biomech Eng, 2009, 131(3): 031010.
[7]  7. Oakes J M, Day S, Weinstein S J, et al. Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry. J Biomech Eng, 2010, 132(2): 021008.
[8]  8. Berg E J, Weisman J L, Oldham M J, et al. Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV). J Biomech, 2010, 43(6): 1039-1047.
[9]  9. Fishler R, Mulligan M K, Sznitman J. Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows. J Biomech, 2013, 46(16): 2817-2823.
[10]  10. International Commissionon Radiological Protection (ICRP). Human respiratory tract model for radiological protection. ICRP Publication 66. Annals of ICRP, 1994, 24(1-3).
[11]  14. 王兴华, 周鸣镝, 成红娟. 湿空气热物性参数的计算//中国建筑学会建筑热能动力分会全国区域能源专业委员会年会. 牡丹江: 中国建筑学会建筑热能动力分会, 2013.
[12]  16. Chhabra S, Prasad A K. Flow and particle dispersion in a pulmonary alveolus--part Ⅰ: velocity measurements and convective particle transport. J Biomech Eng, 2010, 132(5): 051009.
[13]  17. 黄俊. 可吸入颗粒在肺泡中沉积的数值模拟. 杭州: 浙江大学, 2016.
[14]  19. 符乃方, 董志超, 李羡筠, 等. 职业性尘肺病治疗方法研究进展. 职业与健康, 2016, 32(24): 3452-3456.
[15]  6. 李振振. 肺腺泡内颗粒物的沉积及阻塞影响的数值模拟研究. 西安: 西安建筑科技大学, 2016.
[16]  12. ?ywczyk ?, Moskal A. Modeling of the influence of tissue mechanical properties on the process of aerosol particles deposition in a model of human alveolus. J Drug Deliv Sci Tec, 2012, 22(2): 153-159.
[17]  13. Sznitman J. Respiratory flows in the pulmonary acinus and insights on the control of alveolar flows// International Conference on Sensors and Control Techniques (ICSC2000). Wuhan: International Society for Optics and Photonics, 2008: 496-499.
[18]  15. 丁玉龙, 苍大强, 杨天钧. 稀相气固两相垂直管流内的固相浓度和粘度. 北京科技大学学报, 1994, 16(1): 20-25.
[19]  18. 郭西龙. 颗粒物在人体肺部沉积规律及影响因素研究. 长沙: 中南大学, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133