8. Zhang Huaijian, Chavarriaga R, Goel M K, et al. Improved recognition of error related potentials through the use of brain connectivity features. Conf Proc IEEE Eng Med Biol Soc, 2012, (4): 6740-6743.
[2]
10. Chavarriaga R, Millan J D. Learning from EEG error-related potentials in noninvasive brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng, 2010, 18(4): 381-388.
[3]
13. Ge Sunan, Han Jie, Han Min. Nonnegative mixture for underdetermined blind source separation based on a tensor algorithm. Circuits Systems and Signal Processing, 2015, 34(9): 2935-2950.
[4]
14. Navarro-Cebrian A, Knight R T, Kayser A S. Frontal monitoring and parietal evidence: mechanisms of error correction. J Cogn Neurosci, 2016, 28(8): 1166-1177.
[5]
15. Munneke G J, Nap T S, Schippers E E, et al. A statistical comparison of EEG time- and time-frequency domain representations of error processing. Brain Research, 2015, 1618: 222-230.
[6]
16. Bhattacharyya A, Pachori R B. A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Transactions on Biomedical Engineering, 2017, 64(9): 2003-2015.
4. Su K K, Kirchner E A. Classifier transferability in the detection of error related potentials from observation to interaction//IEEE International Conference on Systems Man and Cybernetics, 2013: 3360-3365.
[9]
5. Holroyd C B, Coles M G. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological review, 2002, 109(4): 679-709.
[10]
6. Margaux P, Emmanuel M, Sébastien D, et al. Objective and subjective evaluation of online error correction during P300-based spelling. Advances in Human-Computer Interaction, 2012, (6): 1-13.
[11]
7. Omedes J, Iturrate I, Montesano L, et al. Using frequency-domain features for the generalization of EEG error-related potentials among different tasks//2013 35th Annual International Conference of the IEEE Engineering In Medicine and Biology Society (EMBC), 2013: 5263-5266.
[12]
9. Tong Jijun, Lin Q, Xiao Ran, et al. Combining multiple features for error detection and its application in brain-computer interface. Biomedical Engineering Online, 2016, 15(1): 17.
12. Hu Jing, Wang Chunsheng, Wu Min, et al. Removal of EOG and EMG artifacts from EEG using combination of functional link neural network and adaptive neural fuzzy inference system. Neurocomputing, 2015, 151(1): 278-287.
1. Jafarifarmand A, Badamchizadeh M A, Khanmohammadi S, et al. A new self-regulated neuro-fuzzy framework for classification of EEG signals in motor imagery BCI. IEEE Transactions on Fuzzy Systems, 2018, 26(3): 1485-1497.
[17]
2. Gomez-Pilar J, Corralejo R, Nicolas-Alonso L F, et al. Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly. Med Biol Eng Comput, 2016, 54(11): 1655-1666.
[18]
3. Gehring WJ, Goss B, Coles MGH, et al. A neural system for error detection and compensation. Psychol Sci, 1993, 4: 385-90.