全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

错误相关负电位单次检测技术研究

DOI: doi:10.7507/1001-5515.201708043

Keywords: 错误相关负电位, 脑—机接口, 小波变换, 时频域特征, 单次检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

当个体在感知发生错误时,会在头皮额中央区产生错误相关负电位(ERN)。ERN 信噪比低、个体差异大,单次检测 ERN 比较困难。本文采用 ERN 大脑活动模式图和离线识别正确率的方法优选脑电信号通道,进一步基于 ERN 离线识别正确率对时间段进行优选,然后基于小波变换对 ERN 的低频时域特征与高频时—频域特征进行了分析,在此基础上提出了 ERN 的单次检测算法。最后,通过使用优选出的 6 个通道反馈刺激后 200~600 ms 的脑电数据,提取 0~3.9 Hz 频段的降采样点特征和 3.9~15.6 Hz 频段的能量、方差特征,对 ERN 和非 ERN 进行单次识别,在 10 名受试者中实现了 72.0% ± 9.6% 的识别正确率。本文的研究结果有助于错误指令实时纠正技术在脑—机接口在线系统中的应用

References

[1]  8. Zhang Huaijian, Chavarriaga R, Goel M K, et al. Improved recognition of error related potentials through the use of brain connectivity features. Conf Proc IEEE Eng Med Biol Soc, 2012, (4): 6740-6743.
[2]  10. Chavarriaga R, Millan J D. Learning from EEG error-related potentials in noninvasive brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng, 2010, 18(4): 381-388.
[3]  13. Ge Sunan, Han Jie, Han Min. Nonnegative mixture for underdetermined blind source separation based on a tensor algorithm. Circuits Systems and Signal Processing, 2015, 34(9): 2935-2950.
[4]  14. Navarro-Cebrian A, Knight R T, Kayser A S. Frontal monitoring and parietal evidence: mechanisms of error correction. J Cogn Neurosci, 2016, 28(8): 1166-1177.
[5]  15. Munneke G J, Nap T S, Schippers E E, et al. A statistical comparison of EEG time- and time-frequency domain representations of error processing. Brain Research, 2015, 1618: 222-230.
[6]  16. Bhattacharyya A, Pachori R B. A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Transactions on Biomedical Engineering, 2017, 64(9): 2003-2015.
[7]  18. 崔刚强, 夏良斌, 梁建峰, 等. 基于小波多尺度分析和极限学习机的癫痫脑电分类算法. 生物医学工程学杂志, 2016, 33(6): 1025-1030.
[8]  4. Su K K, Kirchner E A. Classifier transferability in the detection of error related potentials from observation to interaction//IEEE International Conference on Systems Man and Cybernetics, 2013: 3360-3365.
[9]  5. Holroyd C B, Coles M G. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological review, 2002, 109(4): 679-709.
[10]  6. Margaux P, Emmanuel M, Sébastien D, et al. Objective and subjective evaluation of online error correction during P300-based spelling. Advances in Human-Computer Interaction, 2012, (6): 1-13.
[11]  7. Omedes J, Iturrate I, Montesano L, et al. Using frequency-domain features for the generalization of EEG error-related potentials among different tasks//2013 35th Annual International Conference of the IEEE Engineering In Medicine and Biology Society (EMBC), 2013: 5263-5266.
[12]  9. Tong Jijun, Lin Q, Xiao Ran, et al. Combining multiple features for error detection and its application in brain-computer interface. Biomedical Engineering Online, 2016, 15(1): 17.
[13]  11. 李松, 伏云发, 杨秋红, 等. 基于左右手运动想象单通道脑电信号的预处理研究. 生物医学工程学杂志, 2016, (5): 862-866.
[14]  12. Hu Jing, Wang Chunsheng, Wu Min, et al. Removal of EOG and EMG artifacts from EEG using combination of functional link neural network and adaptive neural fuzzy inference system. Neurocomputing, 2015, 151(1): 278-287.
[15]  17. 张毅, 罗明伟, 罗元. 脑电信号的小波变换和样本熵特征提取方法. 智能系统学报, 2012, 7(4): 339-344.
[16]  1. Jafarifarmand A, Badamchizadeh M A, Khanmohammadi S, et al. A new self-regulated neuro-fuzzy framework for classification of EEG signals in motor imagery BCI. IEEE Transactions on Fuzzy Systems, 2018, 26(3): 1485-1497.
[17]  2. Gomez-Pilar J, Corralejo R, Nicolas-Alonso L F, et al. Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly. Med Biol Eng Comput, 2016, 54(11): 1655-1666.
[18]  3. Gehring WJ, Goss B, Coles MGH, et al. A neural system for error detection and compensation. Psychol Sci, 1993, 4: 385-90.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133