1. Lee Y J, Lim Y S, Lim H W, et al. Diagnostic accuracy of 64-slice multidetector CT angiography for detection of in-stent restenosis of vertebral artery ostium stents: comparison with conventional angiography. Acta radiol, 2014, 55(8): 1000-1007.
[2]
2. Andreini D, Pontone G, Mushtaq S, et al. Diagnostic accuracy of multidetector computed tomography coronary angiography in 325 consecutive patients referred for transcatheter aortic valve replacement. Am Heart J, 2014, 168(3): 332-339.
[3]
3. Lee A M, Beaudoin J, Engel L C, et al. Assessment of image quality and radiation dose of prospectively ECG-triggered adaptive dual-source coronary computed tomography angiography (cCTA) with arrhythmia rejection algorithm in systole versus diastole: a retrospective cohort study. Int J Cardiovasc Imaging, 2013, 29(6): 1361-1370.
[4]
4. Beitzke D, Berger-Kulemann V, Schoepf V, et al. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols. Eur Radiol, 2015, 25(8): 2310-2317.
[5]
5. Begemann P G C, Stevendaal U V, Manzke R, et al. Evaluation of spatial and temporal resolution for ECG-gated 16-row multidetector CT using a dynamic phantom. EurRadiol, 2005, 15: 1015-1026.
9. Wood P W, Gibson P H, Becher H. Three-dimensional echocardiography in a dynamic heart phantom: comparison of five different methods to measure chamber volume using a commercially available software. Echo Research and Practice, 2014, 1(2): 51-60.
[10]
10. 陈圆圆. 新型心脏动态体模的设计与临床应用, 泰山: 泰山医学院, 2009.
[11]
11. Horiguchi J, Shen Y, Akiyama Y, et al. Electron beam CT versus 16-MDCT on the variability of repeated coronary artery calcium measurements in a variable heart rate phantom. American Journal of Roentgenology, 2005, 185(4): 995-1000.
13. Zhen Xiantong, Zhang Heye, Islam A, et al. Direct and simultaneous estimation of cardiac four chamber volumes by multioutput sparse regression. Med Image Anal, 2017, 36: 184-196.
15. Husmann L, Leschka S, Desbiolles L, et al. Heart rate-implications for CT image reconstruction. Radiology, 2007, 245(2): 567-576.
[16]
16. Qiao Linbo, Zhang Bofeng, Su Jinshu, et al. A systematic review of structured sparse learning. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4): 445-463.
18. Xiao J J, Stolkin R, Gao Y, et al. Robust fusion of color and depth data for RGB-D target tracking using adaptive range-invariant depth models and spatio-temporal consistency constraints. IEEE Transactions on Cybernetics, 2017, 99: 1-15.
[19]
19. Jiang B, Ma S Q, Causey J, et al. SparRec: an effective matrix completion framework of missing data imputation for GWAS, Scientific Reports, 2016, 9: 35534.
[20]
20. Fan J Q, Li R Z. Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc, 2001, 96(456): 1348-1360.
[21]
21. Lin Tianyi, Ma Shiqian, Zhang Shuzhong. On the global linear convergence of the admm with multiblock variables. SIAM Journal on Optimization, 2015, 25(3): 1478-1497.
[22]
22. Kim S, Chang Yongjin, Ra J B. Cardiac motion correction based on partial angle reconstructed images in x-ray CT. Med Phys, 2015, 42(5): 2560-2571.
[23]
23. Aghayev A, Murphy D J, Keraliya A R. Recent developments in the use of computed tomography scanners in coronary artery imaging. Expert Rev Med Devices, 2016, 13(6): 545-553.
[24]
24. Yamamoto S, Hamada S, Miyamoto M, et al. A new approach towards volumetric assessment of left ventricular function with MSCT. Biomed Imaging Interv J, 2006, 2(3): e50.