13. Stone K R, Rodkey W G, Webber R J, et al. Future directions. collagen-based prostheses for meniscal regeneration. Clin Orthop Relat Res, 1990(252): 129-135.
[7]
14. Heo J, Koh R H, Shim W, et al. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug Deliv Transl Res, 2016, 6(2): 148-158.
[8]
15. Na Yin, Chen Shiyan, Cao Yimeng. Improvement in mechanical properties and biocompatibility of biosynthetic bacterial cellulose/lotus root starch composites. Chinese Journal of Polymer Science, 2017, 35(03): 354-364.
[9]
16. Mandal B B, Park S H, Gil E S, et al. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials, 2011, 32(2): 639-651.
[10]
17. Li Gang, Li Fei, Zheng Zhaozhu, et al. Silk microfiber-reinforced silk composite scaffolds: fabrication, mechanical properties, and cytocompatibility. Journal of Materials Science, 2016, 51(6): 3025-3035.
[11]
18. Sun Jie, Vijayavenkataraman S, Liu Hang. An overview of scaffold design and fabrication technology for engineered knee meniscus. Materials (Basel), 2017, 10(1): 19.
[12]
19. Welsing R T, van Tienen T G, Ramrattan N A, et al. Effect on tissue differentiation and articular cartilage degradation of a polymer meniscus implant. A 2-year follow-up study in dogs. American Journal of Sports Medicine, 2008, 36(10): 1978-1989.
[13]
20. Maher S A, Rodeo S A, Doty S B, et al. Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy, 2010, 26(11): 1510-1519.
[14]
21. Bulgheroni E, Grassi A, Campagnolo M, et al. Comparative study of collagen versus synthetic-based meniscal scaffolds in treating meniscal deficiency in young active population. Cartilage, 2016, 7(1): 29-38.
[15]
22. Gelber P E, Petrica A M, Isart A, et al. The magnetic resonance aspect of a polyurethane meniscal scaffold is worse in advanced cartilage defects without deterioration of clinical outcomes after a minimum two-year follow-up. Knee, 2015, 22(5): 389-394.
[16]
23. Chiari C, Koller U, Dorotka R, et al. A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis and Cartilage, 2006, 14(10): 1056-1065.
[17]
24. Kon E, Filardo G, Tschon M, et al. Tissue engineering for total meniscal substitution: animal study in sheep model-results at 12 months. Tissue Eng Part A, 2012, 18(15/16): 1573-1582.
[18]
25. Baek J, Chen Xian, Sovani S, et al. Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel. J Orthop Res, 2015, 33(4): 572-583.
27. Yuan Zhiguo, Liu Shuyun, Hao Chunxiang, et al. AMECM/DCB scaffold prompts successful total meniscus Reconstruction in a rabbit total meniscectomy model. Biomaterials, 2016, 111: 13-26.
[21]
28. Gao Shuang, Yuan Zhiguo, Xi Tingfei, et al. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications. Front Mater Sci, 2016, 10(2): 101-112.
[22]
29. Gao Shuang, Yuan Zhiguo, Guo Weimin, et al. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci. Mater Sci Eng C Mater Biol Appl, 2017, 71: 891-900.
[23]
30. Gao Shuang, Guo Weimin, Chen Mingxue, et al. Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. Journal of Materials Chemistry B, 2017, 5(12): 2273-2285.
[24]
31. Merriam A R, Patel J M, Culp B M, et al. Successful total meniscus reconstruction using a novel fiber-reinforced scaffold: a 16- and 32-week study in an ovine model. Am J Sports Med, 2015, 43(10): 2528-2537.
[25]
32. Kobayashi M, Chang Yongshun, Oka Masanori. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials, 2005, 26(16): 3243-3248.
[26]
33. Hayes J C, Kennedy J E. An evaluation of the biocompatibility properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application. Mater Sci Eng C Mater Biol Appl, 2016, 59: 894-900.
[27]
34. Hayes J C, Curley C, Tierney P, et al. Biomechanical analysis of a salt-modified polyvinyl alcohol hydrogel for knee meniscus applications, including comparison with human donor samples. J Mech Behav Biomed Mater, 2016, 56: 156-164.
[28]
35. Majd S E, Kuijer R, Schmidt T A, et al. Role of hydrophobicity on the adsorption of synovial fluid proteins and biolubrication of polycarbonate urethanes: materials for permanent meniscus implants. Mater Des, 2015, 83: 514-521.
[29]
36. Majd S E, Rizqy A I, Kaper H J, et al. An in vitro study of cartilage-meniscus tribology to understand the changes caused by a meniscus implant. Colloids Surf B Biointerfaces, 2017, 155: 294-303.
[30]
37. Vrancken A C, Madej W, Hannink G, et al. Short term evaluation of an anatomically shaped polycarbonate urethane total meniscus replacement in a goat model. PLoS One, 2015, 10(7): e0133138.
[31]
38. Vrancken A C, Eggermont F, van Tienen T G, et al. Functional biomechanical performance of a novel anatomically shaped polycarbonate urethane total meniscus replacement. Knee Surg Sports Traumatol Arthrosc, 2016, 24(5): 1485-1494.
[32]
39. Vrancken A C, Hannink G, Madej W, et al. In vivo performance of a novel, anatomically shaped, total meniscal prosthesis made of polycarbonate urethane: a 12-month evaluation in goats. Am J Sports Med, 2017, 45(12): 2824-2834.
[33]
1. Rongen J J, van Tienen T G, van Bochove B, et al. Biomaterials in search of a meniscus substitute. Biomaterials, 2014, 35(11): 3527-3540.
4. Fox A J, Wanivenhaus F, Burge A J, et al. The human meniscus: a review of anatomy, function, injury, and advances in treatment. Clinical Anatomy, 2015, 28(2): 269-287.
40. Chen Mingxue, Gao Shuang, Wang Pei, et al. The application of electrospinning used in meniscus tissue engineering. J Biomater Sci Polym Ed, 2018, 29(5): 461-475.