全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于AdaBoost算法的药物—靶向蛋白作用预测算法

DOI: doi:10.7507/1001-5515.201802026

Keywords: 靶向蛋白, 药物作用预测, 评分预测, AdaBoost 算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

对靶向蛋白的药物作用进行预测可以促进药物新作用的发现。新近的研究更倾向于单独将特定的矩阵填补算法应用在靶向蛋白和药物的相互作用预测中。单模型的矩阵填补算法准确度较低,因此应用在药物—靶向蛋白作用预测方面也难以获得满意的结果。AdaBoost 算法是一种由多分类器组合生成强分类器的算法框架,其在分类应用领域的实用性和有效性已被证明。靶向蛋白的药物作用预测是一个矩阵填补问题,即是一种评分预测过程,因此本文在使用 AdaBoost 算法对药物—靶向蛋白作用进行预测前,将药物—靶向蛋白作用预测的矩阵填补问题转化为分类问题,将 AdaBoost 算法应用在靶向蛋白的药物作用预测评分上,充分利用 AdaBoost 算法框架对多个弱分类器进行融合从而提升性能,得以进行准确的药物—靶向蛋白作用预测。基于公测数据集的实验结果表明,本文提出的算法在预测准确度方面超过了大多数经典算法和新近算法,较好地克服了新近基于机器学习方法单算法的局限性,更好地挖掘隐含因素,有效提升了预测准确度

References

[1]  2. Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Research, 2014, 42(Database issue): D1091-D1097.
[2]  4. Chen Xing, Liu Mingxi, Yan G Y. Drug-target interaction prediction by random walk on the heterogeneous network. Mol Biosyst, 2012, 8(7): 1970-1978.
[3]  5. Iskar M, Zeller G, Zhao Xingming, et al. Drug discovery in the age of systems biology: the rise of computational approaches for data integration. Current opinion in biotechnology, 2012, 23(4): 609-616.
[4]  6. Hopkins A L, Groom C R. The druggable genome. Nature reviews Drug discovery, 2002, 1: 727-730.
[5]  13. Yamanishi Y, Araki M, Gutteridge A A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 2008, 24(13): I232-I240.
[6]  14. Keiser M J, Setola V, Irwin J J, et al. Predicting new molecular targets for known drugs. Nature, 2009, 462(7270): 175-181.
[7]  16. Schapire R E. The strength of weak learnability. Mach Learn, 1990, 5(2): 197-227.
[8]  23. 刘晓峰, 张雪英, Wang Z J. Logistic核函数及其在语音识别中的应用. 华南理工大学学报:自然科学版, 2015, 43(5): 100-106.
[9]  1. Paul S M, Mytelka D S, Dunwiddie C T, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov, 2010, 9(3): 203-214.
[10]  3. Kuhn M, Szklarczyk D, Pletscher-Frankild S A, et al. STITCH 4: integration of protein-chemical interactions with user data. Nucleic Acids Res, 2014, 42(D1): D401-D407.
[11]  7. Drews J. Drug discovery: A historical perspective. Science, 2000, 287(5460): 1960-1964.
[12]  8. Overington J P, Al-Lazikani B, Hopkins A L. How many drug targets are there? Nature Reviews Drug discovery, 2006, 5: 993-996.
[13]  9. Landry Y, Gies J P. Drugs and their molecular targets: an updated overview. Fundamental & clinical pharmacology, 2008, 22(1): 1-18.
[14]  10. Zhu Ji, Zou Hui, Rosset S, et al. Multi-class AdaBoost. Stat Interface, 2009, 2(3): 349-360.
[15]  11. Campillos M, Kuhn M, Gavin A C, et al. Drug target identification using side-effect similarity. Science, 2008, 321(5886): 263-266.
[16]  12. 周福家, 张宏伟, 李卫国. 分子网络多靶标筛选的粒子群数值模拟法. 计算力学学报, 2015, 32(2): 269-273.
[17]  15. Cobanoglu M C, Liu Chang, Hu Feizhuo, et al. Predicting drug-target interactions using probabilistic matrix factorization. J Chem Inf Model, 2013, 53(12): 3399-3409.
[18]  17. Bleakley K, Yamanishi Y. Supervised prediction of drug-target interactions using bipartite local models. Bioinformatics, 2009, 25(18): 2397-2403.
[19]  18. Takács D, Pilászy I, Németh B. Major components of the gravity recommendation system. ACM SIGKDD Explorations Newsletter, 2007, 9(2): 80-83.
[20]  19. Wu Zhenhua, Chen Xiaosu, Xiao Daoju. Offline Chinese signature verification based on segmentation and RBFNN classifier. Acta Automatica Sinica, 2007, 345(1): 995-1001.
[21]  20. Li Dongsheng, Chen Chao, Lv Qin, et al. An algorithm for efficient privacy-preserving item-based collaborative filtering. Future Generation Computer Systems, 2016, 55(C): 311-320.
[22]  21. Bilal M, Israr H, Shahid M, et al. Sentiment classification of Roman-Urdu opinions using Na?ve Bayesian, Decision Tree and KNN classification techniques. Journal of King Saud University-Computer and Information Sciences, 2016, 28(3): 330-344.
[23]  22. Patel T B, Patil H A. Cochlear filter and instantaneous frequency based features for spoofed speech detection. IEEE J Sel Top Signal Process, 2017, 11(4): 618-631.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133