全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

脑电信号共空间模式模糊融合的研究

DOI: doi:10.7507/1001-5515.20150208

Keywords: 脑电, 共空间模式, 信息融合, 脑机接口, 线性识别, Choquet, 模糊积分

Full-Text   Cite this paper   Add to My Lib

Abstract:

共空间模式(CSP)是脑电信号特征提取的主要方法, 但它存在较严重的过拟合问题。本文提出对多通道脑电数据划分多个区域, 分别用CSP算法提取各区域的脑电数据特征, 对得到的各特征分别进行线性分类, 用Choquet模糊积分融合各线性分类结果, 有助于克服脑电信号处理的过拟合问题和提高脑电信号识别准确度, 从而给出了脑电数据处理的一种新框架。采用2005年国际脑机接口(BCI)竞赛数据验证该处理框架, 获得的识别准确率显著提高, 并且在一定程度上解决了CSP的过拟合问题, 显示了本框架处理脑电信息的有效性

References

[1]  8. LU H, ENG H L, GUAN C, et al. Regularized common spatial pattern with aggregation for EEG classification in small-sample setting[J]. IEEE Trans Biomed Eng, 2010, 57(12):2936-2946.
[2]  9. KAWANABE M, SAMEK W, MULLER K R, et al. Robust common spatial filters with a maxmin approach[J]. Neural Comput, 2014, 26(2):1-28.
[3]  10. WANG H, TANG Q, ZHENG W. Ll-norm-based common spatial patterns[J]. IEEE Trans Biomed Eng, 2012, 59(3):653-662.
[4]  11. PARK J, CHUNG W. Common spatial patterns based on generalized norms[C]//2013 International Winter Workshop on Brain-Computer Interface (BCI). Gangwo:2013:39-42.
[5]  12. MOUSAVI E A, MALLER J J, FITZGERALD P B, et al. Wavelet common spatial pattern in asynchronous offline brain computer interfaces[J]. Biomed Signal Process Control, 2011, 6(2):121-128.
[6]  13. ZHANG H, YANG H, GUAN C. Bayesian learning for spatial filtering in an EEG-based brain-computer interface[J]. IEEE Trans Neural Netw Learn Syst, 2013, 24(7):1049-1060.
[7]  14. 王熙照.模糊测度和模糊积分及在分类技术中的应用[M].北京:科学出版社, 2008:18-19.
[8]  15. AUEPHANWIRIYAKUL S, KELLER J M, GADER P D. Generalized Choquet fuzzy integral fusion[J]. Information fusion, 2002, 3(1):69-85.
[9]  16. SCHALK G, BLANKERTZ B, SCHLOGL A, et al. BCI CompetitionⅢ[EB/OL]. (2005-06-16)[2015-03-07].http://www.bbci.de/competition/iii/.
[10]  1. JEON Y, NAM C S, KIM Y J, et al. Event-related (De)synchronization (ERD/ERS) during motor imagery tasks:Implication for brain-computer interfaces[J]. I Int J Industr Ergonom, 2011, 41(5):428-436.
[11]  2. NICOLAS-ALONSO L F, GOMEZ-GIL J. Brain computer interfaces, a review[J]. Sensors (Basel), 2012, 12(2):1211-1279.
[12]  3. LEMM S, BLANKERTZ B, DICKHAUS T, et al. Introduction to machine learning for brain imaging[J]. NeuroImage, 2011, 56(2):387-399.
[13]  4. BLANKERTZ B, SANNELLI C, HALDER S, et al. Neurophysiological predictor of SMR-based BCI performance[J]. NeuroImage, 2010, 51(4):1303-1309.
[14]  5. SANNELLI C, BRAUN M, MULLER K R. Improving BCI performance by task-related trial pruning[J]. Neural Netw, 2009, 22(9):1295-1304.
[15]  6. ARVANEH M, GUAN C, ANG K K, et al. Optimizing spatial filters by minimizing within-class dissimilarities in electroencephalogram-based brain-computer interface[J]. IEEE Trans Neural Netw Learn Syst, 2013, 24(4):610-619.
[16]  7. SAMEK W, KAWANABE M, MULLER K R. Divergence-based framework for common spatial patterns algorithms[J]. IEEE Trans Biomed Eng, 2014, 7:50-72.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133