全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于 Gabor 小波-传递熵的脑-肌电信号同步耦合分析

DOI: doi:10.7507/1001-5515.201608018

Keywords: 皮层肌肉耦合, 恒定握力, Gabor 小波变换, 传递熵, 局部频带

Full-Text   Cite this paper   Add to My Lib

Abstract:

人体运动中脑电(EEG)信号和肌电(EMG)信号间的同步特征能够反映皮层肌肉间功能耦合 (FCMC) 的关系。本文将 Gabor 小波和传递熵 (TE) 结合,提出一种新的方法(Gabor-TE)用以定量分析不同恒定握力下 EEG-EMG 信号间的非线性同步耦合特征及方向特性。本研究首先选取 9 名健康受试者在 4 种不同恒定握力下的 EEG、EMG 信号,并以 Gabor 小波变换进行局部分解;然后计算频带 TE 值并定义单位传递面积指标 (ATE),分析恒定握力下 EEG-EMG 信号的局部频段同步特征及方向特性;最后探究 EEG 信号和 EMG 信号功率谱对 Gabor-TE 方法分析结果的影响。本文研究结果表明:恒定握力下,β 频段 EEG→EMG 方向 TE 值高于 EMG→EEG 方向,且随握力水平增加 EEG→EMG 方向上 β 频段 ATE 值降低;γ 频段 TE 值在 EMG→EEG 和 EEG→EMG 方向上的差异随握力增加而呈现出一定的变化规律;EMG 功率谱与特征频段 TE 结果强相关。本文试验结果表明,Gabor-TE 方法能定性、定量描述 EEG-EMG 信号在局部频带和信息传递上的非线性同步耦合特征,今后或可为研究运动控制及患者康复评价提供一定的理论依据

References

[1]  1. Liu Ming, Wu Bo, Wang Wenzhi, et al. Stroke in China: epidemiology, prevention, and management strategies. Lancet Neurol, 2007, 6(5): 456-464.
[2]  3. Mehrkanoon S, Breakspear M, Boonstra T W. The reorganization of corticomuscular coherence during a transition between sensorimotor states. Neuroimage, 2014, 100: 692-702.
[3]  4. Conway B A, Halliday D M, Shahani U, et al. Common frequency components identified from correlations between magnetic recordings of cortical activity and the electromyogram in man. J Physiol, 1995, 483: 35.
[4]  5. Halliday D M, Conway B A, Farmer S F, et al. Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett, 1998, 241(1): 5-8.
[5]  6. Baker S N, Chiu M, Fetz E E. Afferent encoding of central oscillations in the monkey arm. J Neurophysiol, 2006, 95(6): 3904-3910.
[6]  7. Witham C L, Wang M, Baker S N. Corticomuscular coherence between motor cortex,somatosensory areas and forearm muscles in the monkey. Front Syst Neurosci, 2010, 4(38): 1-14.
[7]  8. 牛小辰, 陈晓玲, 陈迎亚, 等. 基于格兰杰因果性的行走状态下脑肌电同步分析. 中国生物医学工程学报, 2014, 31(6): 696-706.
[8]  9. Schreiber T. Measuring information transfer. Phys Rev Lett, 2000, 85(2): 461.
[9]  10. 谢平, 杨芳梅, 陈晓玲, 等. 基于多尺度传递熵的脑肌电信号耦合分析. 物理学报, 2015(24): 419-428.
[10]  11. 李小兵, 初孟, 邱天爽, 等. 一种基于经验模态分解的时频分布及其在EEG分析中的应用. 生物医学工程学杂志, 2007, 24(5): 990-995.
[11]  12. 庞春颖, 王小甜, 孙晓琳. 一种基于改进经验模态分解的癫痫脑电识别新方法. 中国生物医学工程学报, 2013, 32(6): 663-669.
[12]  13. 谢平, 杨芳梅, 李欣欣, 等. 基于变分模态分解传递熵的脑肌电信号耦合分析. 物理学报, 65(11): 118701.
[13]  14. 罗志增, 李文国. 基于小波变换和盲信号分离的多通道肌电信号处理方法. 电子学报, 2009, 37(4): 823-827.
[14]  15. 刘金平, 桂卫华, 牟学民, 等. 基于 Gabor 小波的浮选泡沫图像纹理特征提取. 仪器仪表学报, 2010(8): 1769-1775.
[15]  16. 谢平, 陈迎亚, 张园园, 等. 基于 Gabor 小波和格兰杰因果的脑-肌电同步性分析. 中国生物医学工程学报, 2017, 36(1): 28-38.
[16]  17. Lee J, Nemati S, Silva I, et al. Transfer entropy estimation and directional coupling change detection in biomedical time series. Biomed Eng Online, 2012, 11(1): 19.
[17]  18. 马培培, 陈迎亚, 杜义浩, 等. 中风康复运动中脑电-肌电相干性分析. 生物医学工程学杂志, 2014, 5(31): 971-977.
[18]  19. Schelter B, Timmer J, Eichler M. Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J Neurosci Methods, 2009, 179(1): 121-130.
[19]  20. Gilbertson T, Lalo E, Doyle L, et al. Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system[J]. Journal of Neuroscience, 2005, 25(34): 7771-7779.
[20]  21. Bauer M, Oostenveld R, Peeters M, et al. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. The Journal of Neuroscience, 2006, 26(2): 490-501.
[21]  22. Brown P, Salenius S, Rothwell J C, et al. Cortical correlate of the Piper rhythm in humans. J Neurophysiol, 1998, 80(6): 2911-2917.
[22]  23. Tsujimoto T, Mima T, Shimazu H, et al. Directional organization of sensorimotor oscillatory activity related to the electromyogram in the monkey. Clinical Neurophysiology, 2009, 120(6): 1168-1173.
[23]  24. Ohara S, Nagamine T, Ikeda A, et al. Electrocorticogram–electromyogram coherence during isometric contraction of hand muscle in human. Clinical Neurophysiology, 2000, 111(11): 2014-2024.
[24]  25. Vysata O, Kukal J, Prochazka A, et al. Age-related changes in EEG coherence. Neurol Neurochir Pol, 2014, 48(1): 35-38.
[25]  26. Kristeva R, Patino L, Omlor W. Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output. Neuroimage, 2007, 36(3): 785-792.
[26]  27. Mima T, Simpkins N, Oluwatimilehin T, et al. Force level modulates human cortical oscillatory activities. Neurosci Lett, 1999, 275(2): 77-80.
[27]  2. Witham C L, Riddle C N, Baker M R, et al. Contributions of descending and ascending pathways to corticomuscular coherence in humans. J Physiol, 2011, 589(15): 3789-3800.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133