4. OKUNO R, YOKOE M, AKAZAWA K, et al. Finger taps movement acceleration measurement system for quantitative diagnosis of Parkinson's disease[C]//Proceedings of the 28th IEEE EMBS Annual International Conference.New York City, USA, 2006.
[3]
6. STAMATAKIS J, AMBROISE J, CRéMERS J, et al. Finger tapping clinimetric score prediction in Parkinson's disease using low-cost accelerometers[J]. Comput Intell Neurosci, 2013:717853.
[4]
7. PINCUS S M. Approximate entropy as a measure of system complexity[J]. Proc Natl Acad Sci U S A, 1991, 88(6):2297-2301.
[5]
8. RICHMAN J S, MOORMAN J R. Physiological time-series analysis using approximate entropy and sample entropy[J]. Am J Physiol Heart Circ Physiol, 2000, 278(6):H2039-H2049.
[6]
9. YENTES J M, HUNT N, SCHMID K K, et al. The appropriate use of approximate entropy and sample entropy with short data sets[J]. Ann Biomed Eng, 2013, 41(2):349-365.
[7]
2. JANKOVIC J. Parkinson's disease:clinical features and diagnosis[J]. J Neurol Neurosurg Psychiatry, 2008, 79(4):368-376.
[8]
3. GOETZ G, POEWE W, RASCOL O, et al. The unified parkinson's disease rating scale(UPDRS):status and recommendations[J]. Movement Disorders, 2003, 18(7):738-750.
[9]
5. KIM J W, LEE J H, KWON Y, et al. Quantification of bradykinesia during clinical finger taps using a gyrosensor in patients with Parkinson's disease[J]. Med Biol Eng Comput, 2011, 49(3):365-371.
[10]
10. PINCUS S M, GOLDBERGER A L. Physiological time-series analysis:what does regularity quantify?[J]. Am J Physiol, 1994, 266(4 Pt 2):H1643-H1656.