全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

细胞骨架在自噬中的作用

DOI: doi:10.7507/1001-5515.201706012

Keywords: 自噬, 细胞骨架, 微管, 肌动蛋白, 肌球蛋白

Full-Text   Cite this paper   Add to My Lib

Abstract:

细胞自噬主要通过清除细胞中异常或多余的结构,起到维持饥饿过程中物质和能量的代谢稳定的功能,而细胞骨架调控涉及膜重排和囊泡转运等多种细胞进程。细胞自噬受到微管和肌动蛋白丝的调控:微管促进自噬体的合成,与自噬体的移动密切相关;肌动蛋白丝支撑自噬泡的扩张,促进自噬体的移动以及与溶酶体的融合;非肌性肌球蛋白ⅡA 参与调控自噬体形成初期的膜传递,肌球蛋白Ⅵ和肌球蛋白 1C 分别影响自噬体的成熟以及自噬体与溶酶体的融合。本文综述了细胞骨架系统对细胞自噬的多重调节,重点介绍肌动蛋白和肌球蛋白对自噬进程的调控,以期为研究自噬相关疾病的发病机制以及开创新的疗法提供一些新的思路

References

[1]  1. Iida T, Onodera K, Nakase H. Role of autophagy in the pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology, 2017, 23(11): 1944-1953.
[2]  2. Moscat J, Karin M, Diaz-Meco M T. p62 in cancer: signaling adaptor beyond autophagy. Cell, 2016, 167(3): 606-609.
[3]  3. Sala G, Marinig D, Arosio A, et al. Role of Chaperone-Mediated autophagy dysfunctions in the pathogenesis of parkinson's disease. Front Mol Neurosci, 2016, 9: 157.
[4]  4. Pedro J M B, Kroemer G, Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ Res, 2017, 120(11): 1812-1824.
[5]  5. Awuh J A, Flo T H. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci, 2017, 74(9): 1625-1648.
[6]  6. Perera R M, Stoykova S, Nicolay B N, et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature, 2015, 524(7565): 361-365.
[7]  7. Hansen M D, Johnsen I B, Stiberg K A, et al. Hepatitis C virus triggers Golgi fragmentation and autophagy through the immunity-related GTPase M. Proc Natl Acad Sci U S A, 2017, 114(17): E3462-E3471.
[8]  8. Wang Pengwei, Hussey P J. Interactions between plant endomembrane systems and the actin cytoskeleton. Front Plant Sci, 2015, 6: 422.
[9]  9. Behar S M, Baehrecke E H. Autophagy is not the answer. Nature, 2015, 528(7583): 482-483.
[10]  10. Pietrocola F, Pol J, Vacchelli E, et al. Autophagy induction for the treatment of cancer. Autophagy, 2016, 12(10): 1962-1964.
[11]  11. Chandra P, Kumar D. Selective autophagy gets more selective: Uncoupling of autophagy flux and xenophagy flux in Mycobacterium tuberculosis-infected macrophages. Autophagy, 2016, 12(3): 608-609.
[12]  12. Zaffagnini G, Martens S. Mechanisms of selective autophagy. J Mol Biol, 2016, 428(9 Pt A): 1714-1724.
[13]  13. Simpson C L, Rompolas P, Holzbaur E L. The selective autophagy receptor NIX is up-regulated during epidermal keratinocyte differentiation and functions to recruit LC3 to mitochondria to induce mitophagy Mol Biol Cell, 2016, 27: P2156.
[14]  14. K?chl R, Hu Xiaowen, Chan E Y, et al. Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic, 2006, 7(2): 129-145.
[15]  15. Fass E, Shvets E, Degani I, et al. Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem, 2006, 281(47): 36303-36316.
[16]  16. Jahreiss L, Menzies F M, Rubinsztein D C. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic, 2008, 9(4): 574-587.
[17]  17. Xu Ming, Li Xiaoxue, Chen Yang, et al. Enhancement of dynein-mediated autophagosome trafficking and autophagy maturation by ROS in mouse coronary arterial myocytes. J Cell Mol Med, 2014, 18(11): 2165-2175.
[18]  18. Calì T, Galli C, Olivari S, et al. Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. Biochem Biophys Res Commun, 2008, 371(3): 405-410.
[19]  19. Kast D J, Dominguez R. WHAMM links actin assembly via the Arp2/3 complex to autophagy. Autophagy, 2015, 11(9): 1702-1704.
[20]  20. Holland P, Simonsen A. Actin shapes the autophagosome. Nat Cell Biol, 2015, 17(9): 1094-1096.
[21]  21. Mi Na, Chen Yang, Wang Shuai, et al. CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol, 2015, 17(9): 1112-1123.
[22]  22. Kruppa A J, Kendrick-Jones J, Myosins B F. Actin and autophagy. Traffic, 2016, 17(8SI): 878-890.
[23]  23. Tumbarello D A, Manna P T, Allen M, et al. Correction: the autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of salmonella typhimurium by autophagy. PLoS Pathog, 2016, 12(1): e1005433.
[24]  24. Zhong Zhenyu, Sanchez-Lopez E, Karin M. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell, 2016, 166(2): 288-298.
[25]  25. Bondzie P A, Chen Huia, Cao Meizhen, et al. Non-muscle myosin-IIA is critical for podocyte f-actin organization, contractility, and attenuation of cell motility. Cytoskeleton (Hoboken), 2016, 73(8): 377-395.
[26]  26. Wong E Y M, Xu C Y, Brahmachary M, et al. A novel ENU-Induced mutation in Myo6 causes vestibular dysfunction and deafness. PLoS One, 2016, 11(5): e0154984.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133