全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于微区域 PM2.5 浓度卡尔曼插值预测模型的研究

DOI: doi:10.7507/1001-5515.201609050

Keywords: PM2.5 浓度, 卡尔曼预测, 三次样条插值, 微区域

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前颗粒物(尤其是 PM2.5)污染问题日趋严重,人们对其关注度越来越高。本文提出一种结合三次样条插值方法的卡尔曼预测模型并将其应用于微区域校园环境 PM2.5 浓度的预测,以及实现 PM2.5 浓度的插值模拟图,模拟 PM2.5 的空间分布。本文实验基于实验室已搭建的环境信息监测系统服务器数据,其 PM2.5 浓度数据预测值和实际值通过 Wilcoxon 带符号秩检验后,双侧渐进显著性概率为 0.527,远大于显著性水平 α = 0.05。同时,与神经网络模型预测方法(BP 预测)和支持向量机预测方法(SVM 预测)对比,卡尔曼预测模型的结果更理想,其日均值 PM2.5 浓度数据预测值和监测值的平均绝对误差(MEA)为 1.8 μg/m3,平均相对误差(MER)为 6%,相关系数 R 为 0.87。实验结果表明:卡尔曼预测模型能有效地用于 PM2.5 浓度预测,结合样条插值方法可以较好地模拟 PM2.5 的空间分布及局部污染特征

References

[1]  1. 郝明家. 城市空气环境质量演变和 PM_(2.5) 的污染及其影响与污染控制//中国环境科学学会学术年会. 成都: 中国环境科学学会, 2014.
[2]  2. 刘杰. 北京大气污染物时空变化规律及评价预测模型研究. 北京: 北京科技大学, 2015.
[3]  3. Gatto N M, Henderson V W, Hodis H N, et al. Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles. Neurotoxicology, 2014, 40(1): 1-7.
[4]  4. Vierk?tter A, Schikowski T, Ranft U, et al. Airborne particle exposure and extrinsic skin aging. J Invest Dermatol, 2010, 130(12): 2719-2726.
[5]  5. Cai Yuanyuan, Zhang Bo, Ke Weixia, et al. Associations of short-term and long-term exposure to ambient air pollutants with hypertension: a systematic review and meta-analysis. Hypertension, 2016, 68(1): 62-70.
[6]  6. Zanobetti A, Dominici F, Wang Yun, et al. A National case-crossover analysis of the short-term effect of PM2.5 on hospitalizations and mortality in subjects with diabetes and neurological disorders. Environ Health, 2014, 13(1): 38.
[7]  7. Adar S D, Sheppard L, Vedal S, et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: a prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med, 2013, 10(4): e1001430.
[8]  8. Yanosky J D, Paciorek C J, Laden F, et al. Spatio-temporal modeling of particulate air pollution in the conterminous United States using geographic and meteorological predictors. Environ Health, 2014, 13: 63.
[9]  9. Mordukhovich I, Coull B, Kloog I, et al. Exposure to sub-chronic and long-term particulate air pollution and heart rate variability in an elderly cohort: the Normative Aging Study. Environ Health, 2015, 14(1): 87.
[10]  10. 李龙, 马磊, 贺建峰, 等. 基于特征向量的最小二乘支持向量机 PM2.5 浓度预测模型. 计算机应用, 2014, 34(8): 2212-2216.
[11]  11. 孙荣基, 赵松, 张小琴, 等. 一种基于 BP 神经网络改进算法的 PM2.5 预测方法. 四川环境, 2015, 34(4): 85-90.
[12]  12. Bao Xinzhong, Tao Qiuyan, Fu Hongyu. Dynamic financial distress prediction based on Kalman filtering. J Appl Stat, 2015, 42(2): 292-308.
[13]  13. Xie Yinghong, Han Xiaowei, Li Qi. Research on applied-information technology with PM2.5 generation and evolution model based on BP neural network. Adv Mater Res, 2014, 3401(1003): 226-229.
[14]  14. Lozhkina O, Lozhkin V, Nevmerzhitsky N, et al. Motor transport related harmful PM2.5 and PM10: from onroad measurements to the modelling of air pollution by neural network approach on street and urban level. J Phys Conf Ser, 2016, 772(1): 12-15.
[15]  15. Hou Weizhen, Li Zhengqiang, Zhang Yuhuan, et al. Using support vector regression to predict PM10 and PM2.5. IOP Conference Series: Earth and Environmental Science, 2014, 17(1): 12268-12273.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133