全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于脑电信号神经反馈控制智能小车的研究

DOI: doi:10.7507/1001-5515.201612080

Keywords: 脑电神经反馈, 脑控机器人, 运动想象, 多特征融合, 多分类器决策

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高基于运动想象(MI)的脑控智能小车的控制性能,本文提出一种基于脑电(EEG)信号神经反馈(NF)控制智能小车的方法。采用 MI 心理策略,通过实时呈现该心理活动相关 EEG 信号特征的能量柱形图给受试者,训练受试者快速掌握 MI 技能并调节其 EEG 信号的活动,并以 MI 多特征融合和多分类器决策相结合的方法,从而在线脑控智能小车。训练组(试验前接受设计的反馈系统训练)取得平均、最高和最低的识别指令准确率分别为 85.71%、90.47% 和 76.19%,对照组(不接受训练)对应的准确率分别为 73.32%、80.95% 和 66.67%;训练组平均、最长和最短用时分别为 92 s、101 s 和 85 s,对照组对应的用时分别为 115.7 s、120 s 和 110 s。通过以上试验研究结果,期望本文可为后续基于 MI 的 EEG 信号 NF 控制智能机器人的开发提供新的思路

References

[1]  1. Schmidt E M, Mcintosh J S, Durelli L, et al. Fine control of operantly conditioned firing patterns of cortical-neurons. Exp Neurol, 1978, 61(2): 349-369.
[2]  2. 王行愚, 金晶, 张宇, 等. 脑控: 基于脑-机接口的人机融合控制. 自动化学报, 2013, 39(3): 208-221.
[3]  3. 伏云发, 王越超, 李洪谊, 等. 直接脑控机器人接口技术. 自动化学报, 2012, 38(8): 1229-1246.
[4]  4. Miller K J, Schalk G, Fetz E E, et al. Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc Natl Acad Sci U S A, 2010, 107(15): 7113-7113.
[5]  5. Li J H, Zhang L Q. Bilateral adaptation and neurofeedback for brain computer interface system. J Neurosci Methods, 2010, 193(2): 373-379.
[6]  6. Choi K, Electroencephalography (EEG)-based neurofeedback training for brain-computer interface (BCI). Experimental Brain Research, 2014, 232(3): 1071-1071.
[7]  7. Kondo T, Saeki M, Hayashi Y A, et al. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface. Hum Mov Sci, 2015, 43: 239-249.
[8]  8. Roberts R, Callow N, Hardy L, et al. Movement imagery ability: development and assessment of a revised version of the vividness of movement imagery questionnaire. J Sport Exerc Psychol, 2008, 30(2): 200-221.
[9]  9. Auer T, Schweizer R, Frahm J. Training efficiency and transfer success in an extended real-time functional MRI neurofeedback training of the somatomotor cortex of healthy subjects. Front Hum Neurosci, 2015, 9: 1-14.
[10]  10. Thibault R T, Lifshitz M, Raz A. The self-regulating brain and neurofeedback: experimental science and clinical promise. Cortex, 2016, 74: 247-261.
[11]  11. Gomez-Pilar J, Corralejo R, Nicolas-Alonso L F, et al. Assessment of neurofeedback training by means of motor imagery based-BCI for cognitive rehabilitation//2014 36th annual international conference of the IEEE engineering in medicine and biology society (EMBC), 2014: 3630-3633.
[12]  12. Neuper C, Scherer R, Wriessnegger S, et al. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin Neurophysiol, 2009, 120(2): 239-247.
[13]  13. Neuper C, Schlogl A, Pfurtscheller G. Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery. Journal of Clinical Neurophysiology, 1999, 16(4): 373-382.
[14]  14. Yu Tianyou, Xiao Jun, Wang Fangyi, et al. Enhanced motor imagery training using a hybrid BCI with feedback. IEEE Trans Biomed Eng, 2015, 62(7): 1706-1717.
[15]  15. Hwang H J, Kwon K, Im C H. Neurofeedback-based motor imagery training for brain-computer interface (BCI). J Neurosci Methods, 2009(1): 150-156.
[16]  16. Alvarez-Meza A M, Velasquez-Martinez L F, Castellanos Dominguez G. Time-series discrimination using feature relevance analysis in motor imagery classification. Neurocomputing, 2015, 151(1): 122-129.
[17]  17. Witte M, Kober S E, Ninaus M, et al. Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front Hum Neurosci, 2013, 7(7): 1-8.
[18]  18. 吴小培, 周蚌艳, 张磊. 运动想象脑机-接口中的 ICA 滤波器设计. 生物物理学报, 2014, 30(7): 540-544.
[19]  19. Li Ma, Cui Y, Yang J F, et al. An adaptive multi-domain fusion feature extraction with method HHT and CSSD. Acta Electronica Sinica, 2013, 41(12): 2479-2486.
[20]  20. 徐宝国, 彭思, 宋爱国. 基于运动想象脑电的上肢康复机器人. 机器人, 2011, 33(3): 307-313.
[21]  21. Fu K, Qu J F, Chai Y, et al. Classifcation of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed Signal Process Control, 2014, 13: 15-22.
[22]  22. 孙会文, 伏云发, 熊馨, 等. 基于 HHT 运动想象脑电模式识别研究. 自动化学报, 2015, 41(9): 1686-1692.
[23]  23. Zhao Qibin, Zhang Liqing, Cichocki A. EEG-based asynchronous BCI control of a car in 3D virtual reality environments. Chinese Science Bulletin, 2009, 54(1): 78-87.
[24]  24. Xia B, Zhang Q M, Xie H. A neurofeedback training paradigm for motor imagery based Brain-Computer interface. International Joint Conference on Neural Networks (IJCNN), 2012.
[25]  25. Kus R, Valbuena D, Zygierewicz J, et al. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(6): 823-835.
[26]  26. Lee Y, Kim J, Lee S, et al. Characteristics of motor imagery based EEG-Brain computer interface using combined cue and neuro-feedback//32nd Annual International Conference of the IEEE EMBS Buenos Aires, 2010: 4238-4241.
[27]  27. Kreilinger A, Hiebel H, Mueller-Putz G R. Single versus multiple events error potential detection in a BCI-Controlled car game with continuous and discrete feedback. IEEE Trans Biomed Eng, 2016, 63(3): 519-529.
[28]  28. Lee P L, Chang H C, Hsieh T Y, et al. A brain-wave-actuated small robot car using ensemble empirical mode decomposition-based approach. IEEE Transactions on Systems Man and Cybernetics Part A: Systems and Humans, 2012, 42(5): 1053-1064.
[29]  29. Shu Xiaokang, Yao Lin, Meng Jianjun, et al. Visual stimulus background effects on SSVEP-Based BCI towards a practical robot car control. International Journal of Humanoid Robotics, 2015, 12(2, SI): 155001-155014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133