全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于格兰杰因果方法的注意脑电网络分析

DOI: doi:10.7507/1001-5515.201600011

Keywords: 脑电图, 事件相关电位, 视觉注意, 格兰杰因果连接, 独立成分分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

大脑信息流向的研究在脑科学研究领域中具有重要意义,格兰杰因果关系是应用广泛的有向功能连通性分析方法,该方法运用多元自回归模型,建立在预测机制的基础上。利用128导脑电仪采集了10个健康被试的视觉选择性注意任务的高分辨率脑电信号,获得事件相关电位;首先采用独立成分分析方法寻找空间成分为枕叶、顶叶、额叶的独立成分,然后基于格兰杰因果方法测量这三个区域的时间序列之间的有向连接关系,同时运用独立样本t检验和靴带抽样法检验每个连接值的统计显著性,以此探讨注意与非注意两种条件之间存在的脑网络信息流向的差异。结果表明,注意条件下,额叶对枕叶、顶叶对枕叶皆有因果关系;而非注意条件下,额叶对枕叶的因果关系消失了,顶叶对枕叶的因果关系依然存在

References

[1]  15. HAYNES J D, TREGELLAS J, REES G. Attentional integration between anatomically distinct stimulus representations in early visual cortex[J]. Proc Natl Acad Sci U S A, 2005, 102(41): 14925-14930.
[2]  16. GAO W, TIAN Z. Learning Granger causality graphs for multivariate nonlinear time series[J]. Journal of Systems Science and Systems Engineering, 2009, 18(1): 38-52.
[3]  17. KAMISKI M, DING M Z, TRUCCOLO W A, et al. Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance[J]. Biol Cybern, 2001, 85(2): 145-157.
[4]  18. KANNAN R, TANGIRALA A K. Correntropy-based partial directed coherence for testing multivariate Granger causality in nonlinear processes[J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2014, 89(6): 062144.
[5]  19. MCMAINS S, KASTNER S. Interactions of top-down and bottom-up mechanisms in human visual cortex[J]. J Neurosci, 2011, 31(2): 587-597.
[6]  1. FRISTON K J, FRITH C D, LIDDLE P F, et al. Functional connectivity: the principal-component analysis of large (PET) data sets[J]. Journal of Cerebral Blood Flow and Metabolism, 1993, 13(1): 5-14.
[7]  2. FRISTON K J, FRITH C D, FRACKOWIAK R S J. Time-dependent changes in effective connectivity measured with PET[J]. Human Brain Mapping, 1993, 1(1): 69-79.
[8]  3. VAN DEN HEUVEL M P, HULSHOFF POL H E. Exploring the brain network: A review on resting-state fMRI functional connectivity[J]. European Neuropsychopharmacology, 2010, 20(8): 519-534.
[9]  4. SIEGEL M, DONNER T H, ENGEL A K. Spectral fingerprints of large-scale neuronal interactions[J]. Nature Reviews Neuroscience, 2012, 13(2): 121-134.
[10]  5. ZOU C L, LADROUE C, GUO S X, et al. Identifying interactions in the time and frequency domains in local and global networks--A Granger Causality Approach[J]. BMC Bioinformatics, 2010, 11: 337.
[11]  6. PENNY W D, STEPHAN K E, MECHELLI A, et al. Modelling functional integration: a comparison of structural equation and dynamic causal models[J]. Neuroimage, 2004, 23(Suppl 1): S264-S274.
[12]  7. PARK B, KIM D S, PARK H J. Graph independent component analysis reveals repertoires of intrinsic network components in the human brain[J]. PLoS One, 2014, 9(1): e82873.
[13]  8. BUGLI C, LAMBERT P. Comparison between principal component analysis and independent component analysis in electroencephalograms modelling[J]. Biom J, 2007, 49(2): 312-327.
[14]  9. GONALVES M S, HALL D A. Connectivity analysis with structural equation modelling: an example of the effects of voxel selection[J]. Neuroimage, 2003, 20(3): 1455-1467.
[15]  10. RAMNANI N, BEHRENS T E, PENNY W, et al. New approaches for exploring anatomical and functional connectivity in the human brain[J]. Biological psychiatry, 2004, 56(9): 613-619.
[16]  11. FRISTON K J, HARRISON L, PENNY W. Dynamic causal modeling[J]. Neuroimage, 2003, 19(4): 1273-1302.
[17]  12. KIEBEL S J, GARRIDO M I, MORAN R J. et al., Dynamic causal modelling for EEG and MEG[J]. Cogn Neurodyn, 2008, 2(2): 121-136.
[18]  13. PENNY W D, STEPHAN K, MECHELLI A, et al. Comparing dynamic causal models[J]. Neuroimage, 2004, 22(3): 1157-1172.
[19]  14. MECHELLI A, PRICE C J, NOPPENEY U, et al. A dynamic causal modeling study on category effects: bottom-up or top-down mediation?[J]. Journal of Cognitive Neuroscience, 2003, 15(7): 925-934.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133