全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

硅纳米线场效应管生物传感器的医学应用

DOI: doi:10.7507/1001-5515.201701012

Keywords: 硅纳米线, 纳米生物传感器, 场效应晶体管, 肿瘤标记物, 分子诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

蛋白质、核酸、病毒等物质的高灵敏度定量检测在疾病诊断、医学研究中起到重要作用。硅纳米线场效应管(SiNWs-FET)生物传感器有望在蛋白质和其它分子的非标记、快速实时响应、超高灵敏检测中成为极有价值的方法之一。本文介绍了硅纳米线场效应管生物传感器的工作原理并总结其在医学中的应用进展,讨论了提高硅纳米线生物传感器灵敏度的方法及目前所面临的挑战,并展望了硅纳米线场效应管生物传感器的发展前景

References

[1]  3. Li Jianlin, Sailor M J. Synthesis and characterization of a stable, label-free optical biosensor from TiO<sub>2</sub>-coated porous silicon. Biosens Bioelectron, 2014, 55(9): 372-378.
[2]  5. Ahmad R, Tripathy N, Park J H, et al. A comprehensive biosensor integrated with a ZnO nanorod FET array for selective detection of glucose, cholesterol and urea. Chem Commun (Camb), 2015, 51(60): 11968-11971.
[3]  6. Li S K, Chou J C, Sun T P, et al. Study on the potentiometric glucose biosensor based on the SnO<sub>2</sub>/ITO/PET. Biomedical Engineering: Applications, Basis and Communications, 2014, 21(6): 900153.
[4]  7. Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533): 1289-1292.
[5]  15. Patolsky F, Zheng Gengfeng, Lieber C M. Nanowire sensors for medicine and the life sciences. Nanomedicine, 2006, 1(1): 51-65.
[6]  17. Zhang G J, Zhang G, Chua J H, et al. DNA sensing by silicon nanowire: charge layer distance dependence. Nano Letters, 2008, 8(4): 1066-1070.
[7]  19. Patolsky F, Zheng G, Hayden O, et al. Electrical detection of single viruses. Proc Natl Acad Sci U S A, 2004, 101(39):14017-14022.
[8]  22. Zhang G J, Chai K T, Luo H Z, et al. Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC. Biosens Bioelectron, 2012, 35(1): 218-223.
[9]  24. Gao Ning, Zhou Wei, Jiang Xiaocheng, et al. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano Lett, 2015, 15(3): 2143-2148.
[10]  26. Shen M Y, Li B R, Li Y K. Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. Biosens Bioelectron, 2014, 60(1): 101-111.
[11]  28. Ishikawa F N, Curreli M, Chang H K, et al. A calibration method for nanowire biosensors to suppress device-to-device variation. ACS Nano, 2009, 3(12): 3969-3976.
[12]  29. Parihar M S, Kranti A. Enhanced sensitivity of double gate junctionless transistor architecture for biosensing applications. Nanotechnology, 2015, 26(14): 145201.
[13]  1. Vigneshvar S, Sudhakumari C C, Senthilkumaran B, et al. Recent advances in biosensor technology for potential applications–an overview. Front Bioeng Biotechnol, 2016, 4: 11.
[14]  2. Jung J, Kim S J, Lee K W, et al. Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors. Biosens Bioelectron, 2014, 55(15): 99-105.
[15]  4. Fathil M F M, Arshad M K M, Ruslinda A R, et al. Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin Ⅰ detection. Sensors & Actuators B: Chemical, 2016, 242: 1142-1154.
[16]  8. Nuzaihan M N M, Hashim U, Arshad M K M, et al. Top-down nanofabrication and characterization of 20 nm silicon nanowires for biosensing applications. PLoS One, 2016, 11(3): e0152318.
[17]  9. Nuzaihan M N M, Hashim U, Rahim Ruslinda A, et al. Fabrication of silicon nanowires array using E-beam lithography integrated with microfluidic channel for pH sensing. Current Nanoscience, 2015, 11(2): 239-244.
[18]  10. Adam T, Hashim U. Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules. Biosens Bioelectron, 2015, 67(2): 656-661.
[19]  11. Mohd Azmi M A, Tehrani Z, Lewis R P, et al. Highly sensitive covalently functionalised integrated silicon nanowire biosensor devices for detection of cancer risk biomarker. Biosens Bioelectron, 2014, 52(4): 216-224.
[20]  12. Kim K, Park C, Kwon D, et al. Silicon nanowire biosensors for detection of cardiac troponin Ⅰ (cTnⅠ) with high sensitivity. Biosens Bioelectron, 2016, 77: 695-701.
[21]  13. Zhou Fan, Li Zengyao, Bao Zengtao, et al. Highly sensitive, label-free and real-time detection of alpha-fetoprotein using a silicon nanowire biosensor. Scand J Clin Lab Invest, 2015, 75(7): 578-584.
[22]  14. Gao Anran, Lu Na, Dai Pengfei, et al. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays. Nanoscale, 2014, 6(21): 13036-13042.
[23]  16. Poghossian A, Sch?ning M J. Label-free sensing of biomolecules with field-effect devices for clinical applications. Electroanalysis, 2014, 26(6): 1197-1213.
[24]  18. Lu Na, Gao Anran, Dai Pengfei, et al. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small, 2014, 10(10): 2022-2028.
[25]  20. Kim J Y, Ahn J H, Moon D I, et al. Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor. Biosens Bioelectron, 2014, 55(15): 162-167.
[26]  21. Zhu Kuiyu, Zhang Ye, Li Zengyao, et al. Simultaneous detection of α-fetoprotein and carcinoembryonic antigen based on Si nanowire field-effect transistors. Sensors (Basel), 2015, 15(8): 19225-19236.
[27]  23. Cheng S, Hotani K, Hideshima S, et al. Field effect transistor biosensor using antigen binding fragment for detecting tumor marker in human serum. Materials (Basel), 2014, 7(4): 2490-2500.
[28]  25. Zhou Wei, Dai Xiaochuan, Fu Tianming, et al. Long term stability of nanowire nanoelectronics in physiological environments. Nano Lett, 2014, 14(3): 1614-1619.
[29]  27. Chen H C, Qiu J T, Yang F L, et al. Magnetic-composite-modified polycrystalline silicon nanowire field-effect transistor for vascular endothelial growth factor detection and cancer diagnosis. Anal Chem, 2014, 86(19): 9443-9450.
[30]  30. Kühlbrandt W. The resolution revolution. Science, 2014, 343(6178): 1443-1444.
[31]  31. Liu Jia, Fu Tianming, Cheng Zengguang, et al. Syringe-injectable electronics. Nat Nanotechnol, 2015, 10(7): 629-636.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133