全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

工频电磁场长期作用影响工作记忆中局部场电位因果网络连接特征

DOI: doi:10.7507/1001-5515.201806004

Keywords: 工频电磁场, 长期作用, 工作记忆, 局部场电位, 因果网络连接特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

电磁场(EMF)作用对神经系统功能的影响,现已成为电磁生物效应领域广泛关注的问题。本文旨在从神经信息网络连接角度探究工频 EMF 长期作用对大脑认知功能的影响及其机制。本文将斯普拉格·道利(SD)大鼠随机分为 3 组,其中模型Ⅰ组将 SD 大鼠置于 2 mT 工频 EMF 中作用 24 d;模型Ⅱ组将 SD 大鼠置于 2 mT 工频 EMF 中作用 48 d;对照组 SD 大鼠未经工频 EMF 作用。随后,采集不同组别 SD 大鼠执行工作记忆(WM)任务过程中前额皮层(PFC)16 通道的局部场电位信号(LFPs),并基于定向传递函数(DTF)构建 LFPs 因果连接网络,最终通过对比各组 SD 大鼠在 WM 过程中 LFPs 信号因果网络特征参数及行为学表现的异同,探讨工频 EMF 长期作用对 WM 的影响。本文研究结果显示,模型Ⅱ组大鼠执行 WM 任务达到正确率 80% 以上所需时间及次数明显多于对照组。WM 任务中,模型Ⅰ、Ⅱ组因果网络连接强度及全局效率值均明显低于对照组;且模型Ⅱ组中因果网络连接密度值明显低于模型Ⅰ组及对照组。结果表明,经 2 mT 工频 EMF 的长期作用,PFC 的 LFPs 信号间因果网络连接强度及全局效率降低,并影响 SD 大鼠的行为学表现。本文的研究结果从神经网络信息传递的角度揭示了工频 EMF 作用影响大脑认知功能的可能机制,可为进一步研究其作用机制提供重要的支持

References

[1]  1. de Bruyn L, de Jager L. Effect of long-term exposure to a randomly varied 50 Hz power frequency magnetic field on the fertility of the mouse. Electromagn Biol Med, 2010, 29(1/2): 52-61.
[2]  2. Hardell L, Sage C. Biological effects from electromagnetic field exposure and public exposure standards. Biomedicine & Pharmacotherapy, 2008, 62(2): 104-109.
[3]  3. Foroozandeh E, Derakhshan-Barjoei P, Jadidi M. Toxic effects of 50 Hz electromagnetic field on memory consolidation in male and female mice. Toxicol Ind Health, 2013, 29(3): 293-299.
[4]  17. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 2010, 52(3): 1059-1069.
[5]  18. Seth A K. A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods, 2010, 186(2): 262-273.
[6]  19. Fairhall A L, Lewen G D, Bialek W, et al. Efficiency and ambiguity in an adaptive neural code. Nature, 2001, 412(6849): 787-792.
[7]  20. Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol, 2007, 3(2): e17.
[8]  8. Baddeley A. Working memory: the interface between memory and cognition. Cogn Neurosci, 1992, 4(3): 281-288.
[9]  10. Stokes M G, Kusunoki M, Sigala N, et al. Dynamic coding for cognitive control in prefrontal cortex. Neuron, 2013, 78(2): 364-375.
[10]  12. Li Shuangyan, Bai Wenwen, Liu Tiaotiao, et al. Increases of theta-low gamma coupling in rat medial prefrontal cortex during working memory task. Brain Res Bull, 2012, 89(3/4): 115-123.
[11]  15. Pesaran B, Musallam S, Andersen RA, et al. Cognitive neural prosthetics. Current Biology, 2006, 16(3): R77-R80.
[12]  16. 易虎. 工作记忆 LFP 网络和 spike 网络协同机制的研究. 天津: 天津医科大学, 2015.
[13]  4. Wang Xiusong, Zhao Ke, Wang Dong, et al. Effects of exposure to a 50 Hz sinusoidal magnetic field during the early adolescent period on spatial memory in mice. Bioelectromagnetics, 2013, 34(4): 275-284.
[14]  5. 李妮, 邬雄, 裴春明. 工频电磁场长期曝露健康风险的预防性政策分析. 高电压技术, 2011, 37(12): 2930-2936.
[15]  6. 王东, 郭键锋, 孔令丰, 等. 极低频电磁场暴露对大鼠学习记忆功能影响的研究. 辐射防护, 2012, 32(5): 296-300.
[16]  7. Baddeley A. Working memory. Science, 1992, 255(5044): 556-559.
[17]  9. Wimmer K, Nykamp D Q, Constantinidis C, et al. Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat Neurosci, 2014, 17(3): 431-439.
[18]  11. Benchenane K, Peyrache A, Khamassi M, et al. Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron, 2010, 66(6): 921-936.
[19]  13. Liu Tiaotiao, Bai Wenwen, Yi Hu, et al. Functional connectivity in a rat model of alzheimer's disease during a working memory task. Curr Alzheimer Res, 2014, 11(10): 981-991.
[20]  14. Xu Xinyu, Tian Yu, Li Shuangyan, et al. Inhibition of propofol anesthesia on functional connectivity between LFPs in PFC during rat working memory task. PLoS One, 2013, 8(12): e83653.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133