12. RAGHUPATHI R. Cell death mechanisms following traumatic brain injury[J]. Brain Pathol, 2004, 14(2): 215-222.
[2]
14. BIANCHI R, GIAMBANCO I, DONATO R. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha[J]. Neurobiol Aging, 2010, 31(4): 665-677.
[3]
16. SABARIRAJAN J, VIJAYARAJ P, NACHIAPPAN V. Induction of acute respiratory distress syndrome in rats by lipopolysaccharide and its effect on oxidative stress and antioxidant status in lung[J]. Indian J Biochem Biophys, 2010, 47(5): 278-284.
[4]
18. ERARSLAN E, EKIZ F, UZ B, et al. Effects of erdosteine on cyclosporine-A-induced hepatotoxicity in rats[J]. Drug Chem Toxicol, 2011, 34(1): 32-37.
[5]
19. ZHAO J J, CHEN N Y, SHEN N, et al. Transplantation of human umbilical cord blood mesenchymal stem cells to treat a rat model of traumatic brain injury[J]. Neural Regen Res, 2012, 7(10): 741-748.
[6]
7. SEN J, BELLI A. S100B in neuropathologic states: the CRP of the brain?[J]. Neurosci Res, 2007, 85(7): 1373-1380.
[7]
8. TIAINEN M, ROINE R O, PETTILA V, et al. Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia[J]. Stroke, 2003, 34(12): 2881-2886.
[8]
9. DERKACH D N, OKAMOTO H, TAKAHASHI S. Neuronal and astroglial injuries in patients undergoing coronary artery bypass grafting and aortic arch replacement during hypothermic cardiopulmonary bypass[J]. Anesth Analg, 2000, 91(5): 1066-1072.
[9]
10. SHENG J G, ITO K, SKINNER R D, et al. In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis[J]. Neurobiol Aging, 1997, 17(5): 761-766.
[10]
11. SCOTTO C, DELOULME J C, ROUSSEAU D, et al. Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis[J]. Mol Cell Biol, 1998, 18(7): 4272-4281.
[11]
13. HAUSMANN R, BIERMANN T, WIEST I, et al. Neuronal apoptosis following human brain injury[J]. Int J Legal Med, 2004, 118(1): 32-36.
[12]
15. HERRMANN M, JOST S, KUTZ S, et al. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography[J]. J Neurotrauma, 2000, 17(2): 113-122.
[13]
1. ?WALKER P A, SHAH S K, HARTING M T, et al. Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation[J]. Dis Model Mech, 2009, 2(1/2): 23-38.
[14]
2. NASEF A, ASHAMMAKHI N, FOUILLARD L. Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms[J]. Regen Med, 2008, 3(4): 531-546.
[15]
3. FEENEY D M, BOYESON M G, LINN R T, et al. Responses to cortical injury:Ⅰ. Methodology and local effects of contusions in the rat[J]. Brain Res, 1981, 211(1): 67-77.
[16]
4. SECCO M, ZUCCONI E, VIEIRA N M, et al. Multipotent stem cells from umbilical cord: cord is richer than blood![J]. Stem Cells, 2008, 26(1): 146-150.
[17]
5. BAKSH D, YAO R, TUAN R S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow[J]. Stem Cells, 2007, 25(6): 1384-1392.
[18]
6. LAMERS K J, VOS P, VERBEEK M M, et al. Protein S-100B, neuron-specific enolase (NSE), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF) and blood of neurological patient4s[J]. Brain Res Bull, 2003, 61(3): 261-264.
[19]
17. CAKIR B, KASIMAY O, KOLGAZI M, et al. Stress-induced multiple organ damage in rats is ameliorated by the antioxidant and anxiolytic effects of regular exercise[J]. Cell Biochem Funct, 2010, 28(6): 469-479.