全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

间充质干细胞移植对脑损伤大鼠神经生化标志物分泌的调节

DOI: doi:10.7507/1001-5515.20150028

Keywords: 人脐血间充质干细胞, 创伤性脑损伤, S100β蛋白, 神经元特异性烯醇化酶

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究探讨人脐血间充质干细胞(HUCBMSCs)移植对大鼠创伤性脑损伤(TBI)模型的神经特异性蛋白分泌的调节和脑保护作用机制, 旨在为脑损伤的干细胞治疗提供理论依据。研究中将用Brdu标记的HUCBMSCs经鼠尾静脉植入大鼠TBI模型。检测和比较假伤组、损伤组和移植组大鼠血浆生化指标(NSE、S100β蛋白、LDH、CK)的改变。采用HE染色观察损伤组、假伤组及移植组大鼠脑损伤周边区组织光镜下形态学变化。在整个实验过程中4组大鼠均未使用免疫抑制剂。实验结果表明移植组大鼠均未发生移植相关的死亡。损伤组大鼠在损伤后早期即可见NSE、S100β蛋白、LDH、CK指标有所升高, 各时间点与假伤组比较差异有统计学意义(P<0.01)。HUCBMSCs移植组大鼠在损伤后上述生化指标在早期有所增高, 但随着时间进展, 移植组血清NSE、S100β蛋白、LDH、CK浓度下降, 与损伤组比较差异有统计学意义(P<0.05)。组织学检测可见移植组脑组织病理改变较损伤组轻微。通过研究我们认为未应用免疫抑制剂的情况下, 经尾静脉注射HUCBMSCs能减少血清NSE、S100β蛋白、LDH和CK的分泌, 有效促进组织损伤的修复, 有助于神经功能的恢复

References

[1]  12. RAGHUPATHI R. Cell death mechanisms following traumatic brain injury[J]. Brain Pathol, 2004, 14(2): 215-222.
[2]  14. BIANCHI R, GIAMBANCO I, DONATO R. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha[J]. Neurobiol Aging, 2010, 31(4): 665-677.
[3]  16. SABARIRAJAN J, VIJAYARAJ P, NACHIAPPAN V. Induction of acute respiratory distress syndrome in rats by lipopolysaccharide and its effect on oxidative stress and antioxidant status in lung[J]. Indian J Biochem Biophys, 2010, 47(5): 278-284.
[4]  18. ERARSLAN E, EKIZ F, UZ B, et al. Effects of erdosteine on cyclosporine-A-induced hepatotoxicity in rats[J]. Drug Chem Toxicol, 2011, 34(1): 32-37.
[5]  19. ZHAO J J, CHEN N Y, SHEN N, et al. Transplantation of human umbilical cord blood mesenchymal stem cells to treat a rat model of traumatic brain injury[J]. Neural Regen Res, 2012, 7(10): 741-748.
[6]  7. SEN J, BELLI A. S100B in neuropathologic states: the CRP of the brain?[J]. Neurosci Res, 2007, 85(7): 1373-1380.
[7]  8. TIAINEN M, ROINE R O, PETTILA V, et al. Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia[J]. Stroke, 2003, 34(12): 2881-2886.
[8]  9. DERKACH D N, OKAMOTO H, TAKAHASHI S. Neuronal and astroglial injuries in patients undergoing coronary artery bypass grafting and aortic arch replacement during hypothermic cardiopulmonary bypass[J]. Anesth Analg, 2000, 91(5): 1066-1072.
[9]  10. SHENG J G, ITO K, SKINNER R D, et al. In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis[J]. Neurobiol Aging, 1997, 17(5): 761-766.
[10]  11. SCOTTO C, DELOULME J C, ROUSSEAU D, et al. Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis[J]. Mol Cell Biol, 1998, 18(7): 4272-4281.
[11]  13. HAUSMANN R, BIERMANN T, WIEST I, et al. Neuronal apoptosis following human brain injury[J]. Int J Legal Med, 2004, 118(1): 32-36.
[12]  15. HERRMANN M, JOST S, KUTZ S, et al. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography[J]. J Neurotrauma, 2000, 17(2): 113-122.
[13]  1. ?WALKER P A, SHAH S K, HARTING M T, et al. Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation[J]. Dis Model Mech, 2009, 2(1/2): 23-38.
[14]  2. NASEF A, ASHAMMAKHI N, FOUILLARD L. Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms[J]. Regen Med, 2008, 3(4): 531-546.
[15]  3. FEENEY D M, BOYESON M G, LINN R T, et al. Responses to cortical injury:Ⅰ. Methodology and local effects of contusions in the rat[J]. Brain Res, 1981, 211(1): 67-77.
[16]  4. SECCO M, ZUCCONI E, VIEIRA N M, et al. Multipotent stem cells from umbilical cord: cord is richer than blood![J]. Stem Cells, 2008, 26(1): 146-150.
[17]  5. BAKSH D, YAO R, TUAN R S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow[J]. Stem Cells, 2007, 25(6): 1384-1392.
[18]  6. LAMERS K J, VOS P, VERBEEK M M, et al. Protein S-100B, neuron-specific enolase (NSE), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF) and blood of neurological patient4s[J]. Brain Res Bull, 2003, 61(3): 261-264.
[19]  17. CAKIR B, KASIMAY O, KOLGAZI M, et al. Stress-induced multiple organ damage in rats is ameliorated by the antioxidant and anxiolytic effects of regular exercise[J]. Cell Biochem Funct, 2010, 28(6): 469-479.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133