全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

环介导等温扩增技术可视化检测结核分枝杆菌

DOI: doi:10.7507/1001-5515.201606066

Keywords: 结核分枝杆菌, 环介导等温扩增, 16S rDNA, 可视化检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提升对结核分枝杆菌(MTB)检测的实用性,本文开展了采用环介导等温扩增方法(LAMP)对 MTB 进行可视化检测的研究。首先,根据 MTB 16S rDNA 序列设计 LAMP 引物。然后,收集临床痰液样本并进行相应处理。为了评价 LAMP 的特异度和灵敏度,本文用电泳产物进行检测并用钙黄绿素进行可视化验证。最后,以细菌培养结果为金标准,用 SPSS 17.0 软件比较培养结果与 LAMP 的一致性。结果显示,特异度实验中无非特异扩增现象,灵敏度实验中的检测极限为 10 拷贝。另外,可视化产物检测方法和电泳后的灵敏性相一致。进一步进行临床实用性评价,灵敏性为 94.47%,特异性为 90%,与细菌培养无统计学差异,结果一致性较好(P>0.05)。综上,LAMP 技术高效而可视,具有在设备匮乏的现场和基层医疗机构的应用前景

References

[1]  1. ?Kaewphinit T, Arunrut N, Kiatpathomchai W, et al. Detection of mycobacterium tuberculosis by using Loop-Mediated isothermal amplification combined with a lateral flow dipstick in clinical samples. Biomed Res Int, 2013: 1-6.
[2]  2. Creecy A, Russ P K, Solinas F, et al. Tuberculosis biomarker extraction and isothermal amplification in an integrated diagnostic device. PLoS One, 2015, 10(7): e0130260.
[3]  3. Bai Yuanyuan, Wang Yueling, Shao Chunhong, et al. GenoType MTBDRplus assay for rapid detection of multidrug resistance in mycobacterium tuberculosis: a Meta-Analysis. PLoS One, 2016, 11(3): e0150321.
[4]  4. Buss B F, Keyser-Metobo A, Rother J, et al. Possible airborne Person-to-Person transmission of mycobacterium bovis - Nebraska 2014-2015. MMWR Morb Mortal Wkly Rep, 2016, 65(8): 197-201.
[5]  5. 周东鹏, 李慧娟, 沙丽. 378 株结核分枝杆菌耐药状况的临床分析. 中国实用医刊, 2011, 38(22): 111-112.
[6]  6. Manjelievskaia J, Erck D, Piracha S, et al. Drug-resistant TB: deadly, costly and in need of a vaccine. Trans R Soc Trop Med Hyg, 2016, 110(3, SI): 186-191.
[7]  7. Li Yan’An, Cao Xinrui, Li Shiming, et al. Characterization of mycobacterium tuberculosis isolates from Hebei, China: genotypes and drug susceptibility phenotypes. BMC Infect Dis, 2016, 16(1): 107.
[8]  8. Li Furong, Gao Bo, Xu Wei, et al. The defect in autophagy induction by clinical isolates of mycobacterium tuberculosis is correlated with poor tuberculosis outcomes. PLoS One, 2016, 11(1): e0147810.
[9]  9. Liaquat A, Iram S, Hussain S, et al. Concomitant presence of culture-proven active pulmonary tuberculosis in patients with chronic obstructive pulmonary disease - A hospital based study. Pak J Med Sci, 2015, 31(6): 1344-1348.
[10]  10. Demers A M, Venter A, Friedrich S O, et al. Direct susceptibility testing of mycobacterium tuberculosis for pyrazinamide by use of the bactec MGIT 960 system. J Clin Microbiol, 2016, 54(5): 1276-1281.
[11]  11. Choi W H. Evaluation of anti-tubercular activity of linolenic acid and conjugated-linoleic acid as effective inhibitors against Mycobacterium tuberculosis. Asian Pac J Trop Med, 2016, 9(2): 121-125.
[12]  12. Tans-Kersten J, Lin Shou Y G, Desmond E A. Evaluating shared laboratory services: detecting mycobacterium tuberculosis complex and drug resistance using molecular and Culture-Based methods. Public Health Rep, 2016, 131(1): 117-125.
[13]  13. Choi Y, Hong S R, Jeon B Y, et al. Conventional and real-time PCR targeting 165 ribosomal RNA for the detection of Mycobacterium tuberculosis complex. Int J Tuberc Lung Dis, 2015, 19(9): 1102-1108.
[14]  14. Padya L, Chinombe N, Magwenzi M, et al. Molecular identification of mycobacterium species of public health importance in cattle in Zimbabwe by 16S rRNA gene sequencing. Open Microbiol J, 2015, 9: 38-42.
[15]  15. 姜广路, 黄海荣, 赵雁林, 等. 痰涂片阳性结核病患者的涂片与培养结果分析. 中华结核和呼吸杂志, 2011, 34(5): 353-355.
[16]  16. Ssengooba W, Meehan C J, Lukoye D, et al. Whole genome sequencing to complement tuberculosis drug resistance surveys in Uganda. Infect Genet Evol, 2016, 40: 8-16.
[17]  17. Cheon S, Cho H H, Kim J, et al. Recent tuberculosis diagnosis toward the end TB strategy. J Microbiol Methods, 2016, 123: 51-61.
[18]  18. Mutingwende I, Vermeulen U, Steyn F, et al. Development and evaluation of a rapid multiplex-PCR based system for Mycobacterium tuberculosis diagnosis using sputum samples. J Microbiol Methods, 2015, 116: 37-43.
[19]  19. Cross L J, Anscombe C, Mchugh T D, et al. A rapid and sensitive diagnostic screening assay for detection of mycobacteria including mycobacterium tuberculosis directly from sputum without extraction. Int J Bacteriol, 2015: 593745.
[20]  20. Cezar R D, Lucena-Silva N, Filho A F, et al. Molecular detection of Mycobacterium bovis in cattle herds of the state of Pernambuco, Brazil. BMC Vet Res, 2016, 12(1): 31.
[21]  21. Balne P K, Basu S, Rath S, et al. Loop mediated isothermal amplification assay using hydroxy naphthol blue, conventional polymerase chain reaction and real-time PCR in the diagnosis of intraocular tuberculosis. Indian J Med Microbiol, 2015, 33(4): 568-571.
[22]  22. Neonakis I K, Spandidos D A, Petinaki E. Use of loop-mediated isothermal amplification of DNA for the rapid detection of Mycobacterium tuberculosis in clinical specimens. Eur J Clin Microbiol Infect Dis, 2011, 30(8): 937-942.
[23]  23. INOSHIMA Y, ISHIGURO N. Evaluating the stability of loop-mediated isothermal amplification reagents at irregular storage temperatures for On-Site diagnosis. Rinsho Biseibutshu Jinsoku Shindan Kenkyukai Shi, 2015, 26(1): 7-12.
[24]  24. Yang Q, Wang F, Prinyawiwatkul W, et al. Robustness of salmonella loop-mediated isothermal amplification assays for food applications. J Appl Microbiol, 2014, 116(1): 81-88.
[25]  25. Melville L, Kenyon F, Javed S, et al. Development of a loop-mediated isothermal amplification (LAMP) assay for the sensitive detection of Haemonchus contortus eggs in ovine faecal samples. Vet Parasitol, 2014, 206(3/4): 308-312.
[26]  26. Cloud J L, Neal H, Rosenberry R, et al. Identification of mycobacterium spp. by using a commercial 16S ribosomal DNA sequencing kit and additional sequencing libraries. J Clin Microbiol, 2002, 40(2): 400-406.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133