全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

血管内支架植入后的内皮损伤及其修复策略

DOI: doi:10.7507/1001-5515.201612008

Keywords: 血管内支架, 血管内皮细胞, 再狭窄, 损伤, 修复

Full-Text   Cite this paper   Add to My Lib

Abstract:

动脉粥样硬化性心脏病是严重危害人类生命健康的心血管疾病。近年来其主要的治疗手段是将血管内支架植入到病变部位,支撑血管并重建血运。然而,大量研究表明,血管内支架植入的介入操作、抗增殖药物释放均会对血管内皮造成极大的损伤,大大增加了支架内再狭窄和晚期血栓形成的风险。维持血管内皮的完整和正常功能可明显降低支架植入带来的一系列风险。研究表明,干细胞动员、归巢、分化、增殖是血管内支架植入后血管内皮修复的主要机制,多种血管内因子、力学微环境变化等均参与此过程,进而影响植入部位的再内皮化。本文对支架植入造成血管内皮损伤的过程、损伤后的修复机制及其影响因素等进行详细阐述,并分析总结其修复策略,为深入理解支架内再狭窄、血管内皮化延迟和晚期血栓形成的机制以及新型药物洗脱支架和生物可降解支架的设计提供参考

References

[1]  1. 陈伟伟, 高润霖, 刘力生, 等. 《中国心血管病报告 2016》概要. 中国循环杂志, 2017, 32(6): 521-530.
[2]  2. Kazemian M R, Solouk A, Tan A, et al. Preventing in-stent restenosis using lipoprotein (a), lipid and cholesterol adsorbent materials. Med Hypotheses, 2015, 85(6): 986-988.
[3]  3. Papafaklis M I, Chatzizisis Y S, Naka K K, et al. Drug-eluting stent restenosis: effect of drug type, release kinetics, hemodynamics and coating strategy. Pharmacol Ther, 2012, 134(1): 43-53.
[4]  4. Lan Hualin, Wang Yi, Yin Tieyin, et al. Progress and prospects of endothelial progenitor cell therapy in coronary stent implantation. J Biomed Mater Res B Appl Biomater, 2015, 104(6): 1237-1247.
[5]  5. Foin N, Torii R, Mattesini A, et al. Biodegradable vascular scaffold:is optimal expansion the key to minimising flow disturbances and risk of adverse events?. EuroIntervention, 2015, 10(10): 1139-1142.
[6]  6. Hu Tingzhang, Yang Jiali, Cui Kun, et al. Controlled Slow-Release Drug-Eluting stents for the prevention of coronary restenosis: recent progress and future prospects. ACS Appl Mater Interfaces, 2015, 7(22): 11695-11712.
[7]  7. Mcginty S, Mckee S, Mccormick C, et al. Release mechanism and parameter estimation in drug-eluting stent systems: analytical solutions of drug release and tissue transport. Math Med Biol, 2015, 32(2): 163-186.
[8]  8. Wilson H K, Canfield S G, Hjortness M K, et al. Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells. Fluids Barriers CNS, 2015, 12: 13.
[9]  9. 李志海, 梁亚洲, 艾帅兵, 等. 他汀类药物对药物涂层支架置入后再内皮化化的影响. 中外女性健康研究. 2015(14): 29-30.
[10]  10. Dan P, Velot E, Decot V, et al. The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. J Cell Sci, 2015, 128(14): 2415-2422.
[11]  11. Yu Baoqi, Wong M M, Potter C M, et al. Vascular stem/progenitor cell migration induced by smooth muscle Cell-Derived chemokine (C-C motif) ligand 2 and chemokine (C-X-C motif) ligand 1 contributes to neointima formation. Stem Cells, 2016, 34(9): 2368-2380.
[12]  12. Campagnolo P, Hong Xuechong, Di Bernardini E A, et al. Resveratrol-Induced vascular progenitor differentiation towards endothelial lineage via MiR-21/Akt/beta-Catenin is protective in vessel graft models. PLoS One, 2015, 10(5): UNSP e0125122.
[13]  13. Liu Junfeng, Chen Zhi, Du Zhongdong, et al. Granulocyte colony-stimulating factor ameliorates coronary artery elastin breakdown in a mouse model of Kawasaki disease. Chin Med J: Engl, 2014, 127(21): 3712-3717.
[14]  14. 安劲松. 雌激素通过内皮祖细胞对冠心病保护作用的研究进展. 内蒙古医学杂志, 2015(3): 318-320.
[15]  15. Poh C K, Shi Zhilong, Lim T Y, et al. The effect of VEGF functionalization of Titanium on endothelial cells in vitro. Biomaterials, 2010, 31(7): 1578-1585.
[16]  16. Song Chunli, Li Qian, Yu Yunpeng, et al. Study of novel coating strategy for coronary stents: simutaneous coating of VEGF and anti-CD34 antibody. Rev Bras Cir Cardiovasc, 2015, 30(2): 159-163.
[17]  17. 沈根, 张顺, 叶红华. 他汀类药物对内皮祖细胞作用的研究进展. 新医学, 2015, 46(12): 789-793.
[18]  18. Saito N, Mori Y, Uchiyama S. Drug diffusion and biological responses of arteries using a drug-eluting stent with nonuniform coating. Med Devices: Evidence and Research, 2016, 9: 33-43.
[19]  19. Zhu Jinzhou, Liu Huizhu, Cui Haipo, et al. Safety and efficacy of a novel abluminal groove-filled biodegradable polymer sirolimus-eluting stent. J Mater Sci Mater Med, 2017, 28(3): 54.
[20]  20. 张旭军. 药物洗脱支架在冠状动脉介入治疗中的新进展. 中国临床研究, 2014, 27(9): 1144-1146.
[21]  21. 潘兴纳, 李亚雄, 蒋立虹. 组织工程血管支架材料的研究与进展. 中国组织工程研究, 2016, 20(34): 5149-5154.
[22]  22. 陈亮, 丁健, 王永利, 等. 镁合金支架植入兔腹主动脉后降解时间观察. 介入放射学杂志, 2015, 24(11): 984-987.
[23]  23. Kubasek J, Vojtech D, Jablonska E, et al. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. Mater Sci Eng C Mater Biol Appl, 2016, 58: 24-35.
[24]  24. Bowen P K, Guillory I R, Shearier E R, et al. Metallic Zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Mater Sci Eng C Mater Biol Appl, 2015, 56: 467-472.
[25]  25. Wu X, Zhao Y, Tang C, et al. Re-endothelialization study on endovascular stents seeded by endothelial cells through up-or downregulation of VEGF. ACS Appl Mater Interfaces, 2016, 8(11): 7578-7589.
[26]  26. Shirota T, Yasui H, Shimokawa H, et al. Fabrication of endothelial progenitor cell(EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials, 2003, 24(13): 2295-2302.
[27]  27. Hwang C W, Johnston P V, Gerstenblith G, et al. Stem cell impregnated nanofiber stent sleeve for on-stent production and intravascular delivery of paracrine factors. Biomaterials, 2015, 52: 318-326.
[28]  28. Wu Xue, Yin Tieying, Tian Jie, et al. Distinctive effects of CD34- and CD133-specific antibody-coated stents on re-endothelialization and in-stent restenosis at the early phase of vascular injury. Regenerative Biomaterials, 2015, 2(2): 87-96.
[29]  29. 杨峰, 赵骞, 张世轩, 等. 雷帕霉素联合 CD34 抗体复合支架快速捕获外周血中内皮祖细胞. 中国组织工程研究, 2015, 19(41): 6694-6698.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133