全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一种多模态脑电和近红外光谱联合采集头盔设计及实验研究

DOI: doi:10.7507/1001-5515.201611025

Keywords: 多模态, 脑电-近红外光谱头盔, 脑电, 近红外光谱, 脑—机接口

Full-Text   Cite this paper   Add to My Lib

Abstract:

多模式脑—机接口和多模式脑功能成像是目前和未来的发展趋势。本研究针对基于脑电-近红外光谱(EEG-NIRS)的多模态脑—机接口,为同时采集运动区的脑活动,设计了一种 EEG 和 NIRS 联合采集的头盔并进行实验验证。根据 10-20 系统或 10-20 扩展系统、NIRS 探头和 EEG 电极直径和间距,以 C3 或 C4 为基准电极对近红外探头进行对准,把 EEG 电极置于 NIRS 电极之间,同时测量同一功能脑区 NIRS 变化和与之对应的 EEG 变化;采用螺纹旋紧的方式耦合近红外探头夹持器和近红外探头。为验证该多模态 EEG-NIRS 联合采集头盔的可行性和有效性,在涉及右手握力和握速运动想象共 6 个任务期间,采集了 6 个健康被试运动区的 NIRS 和 EEG 信号。这些信号在一定程度上可能反映了握力和握速运动想象相关的脑活动。实验表明本文设计的 EEG 和 NIRS 联合采集头盔可行并有效,不仅能够为基于 EEG-NIRS 的多模态运动想象脑—机接口提供支持,也可望为 EEG-NIRS 多模态脑功能成像研究提供支持

References

[1]  1. Wolpaw J R, Wolpaw E W. Brain-computer interfaces: principles and practice. New York: Oxford University Press, 2012: 66.
[2]  2. 伏云发, 徐保磊, 李永程. 脑-机接口: 原理与实践. 北京: 国防工业出版社, 2016: 104.
[3]  3. Gao Shangkai. Grand challenges in EEG based brain-computer interface [EB/OL]. (2015-09-04) [2016-11-12]. http://lifesciences.ieee.org/lsg-cc/2012-ieee-life-sciences-grand-challenges-conference/presentations/session-1/September20, 2015.
[4]  4. Fu Yunfa, Xiong Xin, Jiang Changhao, et al. Imagined hand clenching force and speed modulate brain activity and are classified by NIRS combined with EEG. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(9): 1641-1652.
[5]  5. Izzetoglu M, Izzetoglu K, Bunce S, et al. Functional near-infrared neuroimaging. IEEE Trans Neural Syst Rehabil Eng, 2005, 13(2): 153-159.
[6]  6. Hoshi Y. Functional near-infrared spectroscopy: current status and future prospects. J Biomed Opt, 2007, 12(6): 24-32.
[7]  7. Coyle S M, Ward T E, Markham C M. Brain-computer interface using a simplified functional near-infrared spectroscopy system. J Neural Eng, 2007, 4(3): 219-226.
[8]  8. Yin Xuxian, Xu Baolei, Jiang Changhao, et al. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. J Neural Eng, 2015, 12(3): 036004.
[9]  9. 胡汉彬, 祝晔, 蒋田仔. 基于功能近红外光谱技术的脑—机接口研究. 生物医学工程研究, 2010, 29(1): 23-26.
[10]  10. Wriessnegger S C, Kurzmann J, Neuper C. Spatio-temporal differences in brain oxygenation between movement execution and imagery: a multichannel near-infrared spectroscopy study. Int J Psychophysiol, 2008, 67(1): 54-63.
[11]  11. Karahan E, Rojas-Lopez P A, Bringas-Vega M L, et al. Tensor analysis and fusion of multimodal brain images. Proceedings of the IEEE, 2015, 103(9, SI): 1531-1559.
[12]  12. Ribeiro A S, Lacerda L M, Ferreira H A. Multimodal imaging brain connectivity analysis (MIBCA) toolbox. PEERJ, 2015, 3: e1078.
[13]  13. Selvaraj S, Mouchlianitis E, Faulkner P, et al. Presynaptic serotoninergic regulation of emotional processing: a multimodal brain imaging study. Biol Psychiatry, 2015, 78(8): 563-571.
[14]  14. Lahat D, Adali T, Jutten C. Multimodal data fusion: an overview of methods, challenges, and prospects. Proceedings of the IEEE, 2015, 103(9, SI): 1449-1477.
[15]  15. 尧德中, 雷旭. 同步脑电-核磁共振原理与技术. 北京: 科学出版社, 2013: 1-20.
[16]  16. Pfurtscheller G, Allison B Z, Brunner C, et al. The hybrid BCI. Front Neurosci, 2010, 4: 30. DOI: 10.3389/fnpro.2010.00003..
[17]  17. Lee M H, Fazli S, Mehnert J, et al. Subject-dependent classification for robust idle state detection using multi-modal neuroimaging and data-fusion techniques in BCI. Pattern Recognit, 2015, 48(8): 2725-2737.
[18]  18. Fazli S, Daehne S, Samek W, et al. Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based brain-computer interfaces. Proceedings of the IEEE, 2015, 103(6, SI): 891-906.
[19]  19. 高上凯. 浅谈脑-机接口的发展现状与挑战. 中国生物医学工程学报, 2007, 26(6): 801-803, 809.
[20]  20. 尧德中, 刘铁军, 雷旭, 等. 基于脑电的脑—机接口:关键技术和应用前景. 电子科技大学学报, 2009, 38(5): 550-554.
[21]  21. Fazli S, Mehnert J, Steinbrink J, et al. Enhanced performance by a hybrid NIRS-EEG brain computer interface. Neuroimage, 2012, 59(1): 519-529.
[22]  22. Koo B, Lee H G, Nam Y, et al. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery. J Neurosci Methods, 2015, 244: 26-32.
[23]  23. Wallois F, Mahmoudzadeh M, Patil A, et al. Usefulness of simultaneous EEG-NIRS recording in language studies. Brain Lang, 2012, 121(2): 110-123.
[24]  24. Machado A, Lina J M, Tremblay J, et al. Detection of hemodynamic responses to epileptic activity using simultaneous Electro-EncephaloGraphy (EEG)/Near Infra Red Spectroscopy (NIRS) acquisitions. Neuroimage, 2011, 56(1): 114-125.
[25]  25. Wallois F, Patil A, Héberlé C, et al. EEG-NIRS in epilepsy in children and neonates. Neurophysiol Clin, 2010, 40(5/6): 281-292.
[26]  26. Tomita Y, Vialatte F B, Dreyfus G, et al. Bimodal BCI using simultaneously NIRS and EEG. IEEE Trans Biomed Eng, 2014, 61(4): 1274-1284.
[27]  27. Blokland Y, Spyrou L, Thijssen D, et al. Combined EEG-fNIRS decoding of motor attempt and imagery for brain switch control: an offline study in patients with tetraplegia. IEEE Trans Neural Syst Rehabil Eng, 2014, 22(2): 222-229.
[28]  28. Khan M J, Hong M J, Hong K S. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Front Hum Neurosci, 2014, 8(244): 244.
[29]  29. Klem G H, Luders H O, Jasper H H, et al. The ten-twenty electrode system of the International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl, 1999, 52: 3-6.
[30]  30. Safaie J, Grebe R, Abrishami Moghaddam H, et al. Toward a fully integrated wireless wearable EEG-NIRS bimodal acquisition system. J Neural Eng, 2013, 10(5): 056001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133