全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

大鼠子宫去细胞支架及其细胞外基质凝胶的制备

DOI: doi:10.7507/1001-5515.201704070

Keywords: 化学提取法, 子宫去细胞支架, 细胞外基质凝胶

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究采用化学提取法制备大鼠子宫去细胞支架,以探究大鼠子宫细胞外基质(ECM)凝胶制备的可行性。取大鼠子宫,经 1% 十二烷基磺酸钠(SDS)、3% 曲拉通 X-100(TritonX-100)、4% 脱氧胆酸钠(SDC)溶液依次振摇,制得大鼠子宫去细胞支架。通过扫描电镜、组织化学染色、免疫组化等方法检测支架去细胞化情况。将成功制备的大鼠子宫去细胞支架经胃蛋白酶消化得 ECM 凝胶,特异性检测 ECM 凝胶中蛋白含量,测定其流变学性能。结果表明,化学提取法能有效去除细胞,完全保留支架中 ECM 蛋白成分;本研究制得的 ECM 凝胶中含有大量 ECM 蛋白,胶凝稳定,或可为体外子宫内膜构建提供合适的支架材料

References

[1]  1. Zupi E, Centini G, Lazzeri L. Asherman syndrome: an unsolved clinical definition and management. Fertil Steril, 2015, 104(6): 1380-1381.
[2]  2. Campo H, Cervelló I, Simón C. Bioengineering the uterus: an overview of recent advances and future perspectives in reproductive medicine. Ann Biomed Eng, 2017, 45(7): 1710-1717.
[3]  3. Hellstr?m M, El-Akouri C, Sihlbom, et al. Towards the development of a bioengineered uterus: comparisonof different protocols for rat uterus decellularization. Acta Biomaterials, 2014, 08(18): 5034-5042.
[4]  4. Chani B, Puri V, Sobti R C, et al. Decellularized scaffold of cryopreserved rat kidney retains its recellularization potential. PLoS One, 2017, 12(3): e0173040.
[5]  5. Ghuman H, Massensini A R, Donnelly J, et al. ECM hydrogel for the treatment of stroke: characterization of the host cell infiltrate. Biomaterials, 2016, 91(14): 166-181.
[6]  6. Wang R M, Christman K L. Decellularized myocardial matrix hydrogels: in basic research and preclinical studies. Adv Drug Deliv Rev, 2016, 96(2): 77-82.
[7]  7. 王和平, 王常勇, 江红. 子宫内膜体外构建及其应用研究进展. 生殖医学杂志, 2007, 16(1): 60-63.
[8]  8. 单铁英. 人子宫内膜的体外构建及 Ang-(1-7)和 AngⅡ对子宫内膜细胞和子宫内膜组织的影响. 石家庄: 河北医科大学, 2014.
[9]  9. Miyazaki K, Maruyama T. Partial regeneration and reconstruction of the rat uterus through recellularization of a decellularized uterine matrix. Biomaterials, 2014, 35(31): 8791-8800.
[10]  10. 安慧敏, 刘慧, 王常勇, 等. 人子宫内膜体外构建的实验研究. 生殖医学杂志, 2007, 15(2): 96-100.
[11]  11. Ott H C, Matthiesen T S, Goh S K, et al. Perfusion-decellularized matrix: using Nature's platform to engineer a bioartificial heart. Nat Med, 2008, 14(2): 213-221.
[12]  12. Raredon M S, Rocco K A, Gheorghe C P, et al. Biomimetic culture reactor for whole-lung engineering. Biores Open Access, 2016, 5(1): 72-83.
[13]  13. Pu Lei, Wu Jian, Pan Xingna, et al. Determining the optimal protocol for preparing an acellular scaffold of tissue engineered small-diameter blood vessels. J Biomed Mater Res B Appl Biomater, 2018, 106(2): 619-631.
[14]  14. Hymes J P, Klaenhammer T R. Stuck in the middle: fibronectin-binding proteins in Gram-positive bacteria. Front Microbiol, 2016, 7: 1504. DOI: 10.3389/fmicb.2016.01504.
[15]  15. Dreymueller D, Theodorou K, Donners M, et al. Fine tuning cell migration by a disintegrin and metalloproteinases. Mediators Inflamm, 2017: 9621724.
[16]  16. Massensini A R, Ghuman H, Saldin L T, et al. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta Biomater, 2015, 27(40): 116-130.
[17]  17. Freytes D O, Martin J, Velankar S S, et al. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials, 2008, 29(11): 1630-1637.
[18]  18. Brown D A, Maclellan W R, Laks H, et al. Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue. Biotechnol Bioeng, 2007, 97(4): 962-975.
[19]  19. Davis B H, Schroeder T, Yarmolenko P S, et al. An in vitro system to evaluate the effects of ischemia on survival of cells used for cell therapy. Ann Biomed Eng, 2007, 35(8): 1414-1424.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133