全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

睡眠呼吸暂停综合征脑电关联维特性研究

DOI: doi:10.7507/1001-5515.201604045

Keywords: 睡眠呼吸暂停综合征, 脑电图, 非线性, 关联维

Full-Text   Cite this paper   Add to My Lib

Abstract:

睡眠呼吸暂停综合征(SAS)是一种常见且危害巨大的全身性睡眠疾病。SAS 患者存在明显的脑部结构和功能的影像学改变,而脑电图(EEG)能反映大脑组织的电活动及功能状态,是描述睡眠过程最直观的参数。基于 EEG 信号的非平稳和非线性特性,本文采用非线性方法对 SAS 患者睡眠 EEG 信号的关联维特性进行分析。将 6 名 SAS 患者组成 SAS 组,6 名健康人组成对照组。研究结果显示,SAS 患者和健康人睡眠 EEG 信号的关联维变化规律一致,即随着睡眠加深,其关联维均逐渐减小,但到快速眼动期(REM)时,关联维又上升至觉醒和浅睡眠期的水平;与此同时,SAS 组的关联维在各个睡眠阶段均低于对照组,两组间存在的差异具有统计学意义(P<0.01)。研究结果表明,SAS 患者的 EEG 信号与健康人之间存在明显的非线性动力学差异,这为研究 SAS 的生理机制及实现 SAS 的自动检测提供了新的方向

References

[1]  20. Stam C J, Jelles B, Achtereekte H A, et al. Diagnostic usefulness of linear and nonlinear quantitative EEG analysis in Alzheimer's disease. Clin Electroencephalogr, 1996, 27(2): 69-77.
[2]  21. Takens F. Detecting strange attractors in turbulence. Lecture Notes in Mathematics, 1981, 898(1): 366-381.
[3]  22. 李红利.癫痫脑电信号的非线性分析. 天津: 天津大学, 2012.
[4]  23. CAO Liangyue. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 1997, 110(1/2): 43-50.
[5]  24. Grassberger J, Procacria I. Measuring the strangeness of strange attractor. Physica D, 1983, 9: 189-208.
[6]  25. Janjarasjitt S, Scher M S, Loparo K A. Nonlinear dynamical analysis of the neonatal EEG time series: the relationship between sleep state and complexity. Clin Neurophysiol, 2008, 119(8): 1812-1823.
[7]  26. 丁黎明.睡眠脑电的混沌学研究. 镇江: 江苏大学, 2007.
[8]  27. Coito A S, Sanches J. Assessment of obstructive sleep apnea syndrome by spectral analysis of physiological parameters//1st Portuguese Meeting in Bioengineering, 2011: 2.
[9]  28. Coito A S, Belo D, Paiya T, et al. Topographic EEG brain mapping before, during and after Obstructive Sleep Apnea Episodes// 2011 IEEE International Symposium on/ Biomedical Imaging: From Nano to Macro, 2011: 1860-1863.
[10]  29. Ak?ahin M, Ayd?n S, F?rat H, et al. Artificial apnea classification with quantitative sleep EEG synchronization. J Med Syst, 2012, 36(1): 139-144.
[11]  30. Almuhammadi W S, Aboalayon K A, Faezipour M. Efficient obstructive sleep apnea classification based on EEG signals//2015 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE (LISAT), 2015: 1-6.
[12]  31. 江朝晖, 冯焕清, 刘大路, 等. 改进 G-P 算法与睡眠脑电的关联维. 北京生物医学工程, 2004, 23(4): 260-262.
[13]  1. ?Guilleminault C, Tilkian A, Dement W C. The sleep apnea syndrome. Annu Rev Med, 1976, 27: 465-484.
[14]  2. 王永杰. 打鼾不治会得大病. 大众卫生报. 2005.5.10.
[15]  3. Young T, Peppard P, Palta M, et al. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med, 1997, 157(15): 1746-1752.
[16]  4. Dimsdale J E, Loredo J S, Profant J. Effect of continuous airway pressure on blood pressure. Hypertension, 2000, 35: 144-147.
[17]  5. 于兰, 贾占玲. 睡眠与睡眠障碍, 长春, 吉林人民出版社: 2006.
[18]  6. Zimmerman M E, Aloia M S. A review of neuroimaging in obstructive sleep apnea. J Clin Sleep Med, 2006, 2(4): 461-471.
[19]  7. Ayalon L, Peterson S. Functional central nervous system imaging in the investigation of obstructive sleep apnea. Curr Opin Pulm Med, 2007, 13(6): 479-483.
[20]  8. Nowak M, Kornhuber J, Meyrer R. Daytime impairment and neurodegeneration in OSAS. Sleep, 2006, 29(12): 1521-1530.
[21]  9. Malinowska U, Durka P J, Blinowska K J, et al. Micro- and macrostructure of sleep EEG. IEEE Eng Med Biol Mag, 2006, 25(4): 26-31.
[22]  10. Peiris M T R, Jones R D, Davidson P R. Detecting behavioral microsleeps from EEG power spectra// In Proceedings of the 28th IEEE international conference on engineering in medicine and biology society, 2006: 5723-5726.
[23]  11. Sugi T, Nakamura M, Shimokawa T, et al. Automatic detection of EEG arousals by use of normalized parameters for different subjects//In Proceedings of the IEEE Asian-Pacific conference on engineering in medicine and biology society, 2003: 146-147.
[24]  12. Ventouras E M, Ktonas P Y, Tsekou H, et al. Slow and fast EEG sleep spindle component extraction using Independent component analysis//In Proceedings of the 8th IEEE international conference on bioinformatics and biomedical engineering, 2008: 1-6.
[25]  13. Zhang D X, Wu X P, Guo X J. The EEG signal preprocessing based on empirical mode decomposition//In Proceedings of the 2nd IEEE international conference on bioinformatics and biomedical engineering, 2008: 2131-2134.
[26]  14. Kantz H, Sehreiber T. Nonlinear time series analysis. Cambridge: cambridge university press, 1996.
[27]  15. Pritchard W S, Duke D W, Krieble K K. Dimensional analysis of resting human EEG. II: Surrogate-data testing indicates nonlinearity but not low-dimensional chaos. Psychophysiology, 1995, 32(5): 486-491.
[28]  16. Babloyantz A, Salazar J M, Nicolis C. Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys Lett A, 1985, 111(3): 152-156.
[29]  17. Babloyantz A, Destexhe A. Low-dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci U S A, 1986, 83(10): 3513-3517.
[30]  18. Pijin J P, Neerven J V, Noest A, et al. Chaos or noise in EEG signals. dependence on state and brain site. Electroencephalogr Clin Neurophysiol, 1991, 79: 371-381.
[31]  19. Stam C J, Jelles B, Achtereekte H A, et al. Investigation of EEG non-linearity in dementia and Parkinson's disease. Electroencephalogr Clin Neurophysiol, 1995, 95(5): 309-317.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133