全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Fe2O3 纳米颗粒对模拟哮喘气道黏液的流变学性能影响

DOI: doi:10.7507/1001-5515.201608001

Keywords: 哮喘, Fe2O3 纳米颗粒, 气道黏液, 流变学

Full-Text   Cite this paper   Add to My Lib

Abstract:

哮喘患者气道黏液流变特性易发生变化引发气道栓塞。Fe2O3 纳米颗粒是一种可经气道输送的药物载体,但其对气道黏液流变特性的影响未见报道。本实验用超声波法分散 Fe2O3 纳米颗粒,采用扫描电镜、原子力显微镜和纳米激光粒度及 zeta 电位分析仪对其分散结果进行表征;将分散后的 Fe2O3 纳米颗粒加入到模拟哮喘气道黏液中(终浓度分别为 0.03、0.3、0.4 mg/mL)。用旋转流变仪进行流动曲线、屈服应力、大幅振荡剪切检测黏液流变学特性的变化。实验结果显示,Fe2O3 纳米颗粒处理使模拟哮喘气道黏液的零剪切粘度降低,且随着剪切速率的增加,黏液的结缠速度降低;对照组模拟哮喘气道黏液的屈服应力为 19.0 Pa,而经 Fe2O3 纳米颗粒处理(0.03、0.3 和 0.4 mg/mL)的模拟哮喘黏液的屈服应力分别是为 17.0、0.99 和 0.7 Pa;经 Fe2O3 纳米颗粒处理的模拟哮喘气道黏液在大振幅扫描和低频到高频剪切震荡扫描下,其粘弹性模量均出现了较明显的变化。采用光学方法观察气道黏液结构的结果显示,Fe2O3 纳米颗粒破坏了黏液网状结构。实验结果表明,Fe2O3 纳米颗粒会改变模拟哮喘气道黏液的流变学特性,本研究的结果可为进一步开发基于 Fe2O3 纳米颗粒的气道黏液解黏剂奠定相应的理论基础

References

[1]  1. ?Papatriantafyllou M. The dual mucus defence. Nat Rev Immunol, 2013, 13(11): 774.
[2]  2. Button B, CAI L H, Ehre C, et al. A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science, 2012, 337(697): 937-941.
[3]  3. Fahy J V, Dickey B F. Airway mucus function and dysfunction. N Engl J Med, 2010, 363(23): 2233-2247.
[4]  4. Lai S K, Wang Yingying, Wirtz D, et al. Micro- and macrorheology of mucus. Adv Drug Deliv Rev, 2009, 61(2): 86-100.
[5]  5. Johnson D C. Airway mucus function and dysfunction. N Engl J Med, 2011, 364(10): 978; author reply 978.
[6]  6. Kim W D. Lung mucus: a clinician's view. Eur Respir J, 1997, 10(8): 1914-1917.
[7]  7. Ohbayashi H, Setoguchi Y, Fukuchi Y, et al. Pharmacological effects of lysozyme on COPD and bronchial asthma with sputum: A randomized, placebo-controlled, small cohort, cross-over study. Pulm Pharmacol Ther, 2016, 37: 73-80.
[8]  8. Nordg?rd C, Nonstad U, Older?y M, et al. Alterations in mucus barrier function and matrix structure induced by guluronate oligomers. Biomacromolecules, 2014, 15(6): 2294-2300.
[9]  9. Hamed R, Fiegel J. Synthetic tracheal mucus with native rheological and surface tension properties. J Biomed Mater Res A, 2014, 102(6): 1788-1798.
[10]  10. Dickey B F. Walking on solid ground. Science, 2012, 337(697): 924-925.
[11]  11. Thornton D, Sheehan J. From mucins to mucus: toward a more coherent understanding of this essential barrier. Proc Am Thorac Soc, 2004, 1(1): 54-61.
[12]  12. Volsko T. Airway clearance therapy: finding the evidence. Respir Care, 2013, 58(10): 1669-1678.
[13]  13. Tomaiuolo G, Rusciano G, Caserta S, et al. A new method to improve the clinical evaluation of cystic fibrosis patients by mucus viscoelastic properties. PLoS One, 2014, 9(1): e82297.
[14]  14. Vasquez E S, Bowser J, Swiderski C A, et al. Rheological characterization of mammalian lung mucus. RSC Adv, 2014, 4(66): 34780-34783.
[15]  15. Mcgill S L, Smyth H D C. Disruption of the mucus barrier by topically applied exogenous particles. Mol Pharm, 2010, 7(6): 2280-2288.
[16]  16. Daviskas E, Rubin B K. Effect of inhaled dry powder mannitol on mucus and its clearance. Expert Rev Respir Med, 2013, 7(1): 65-75.
[17]  17. Chen E Y T, Wang Y C, Chen C S, et al. Functionalized positive nanoparticles reduce mucin swelling and dispersion// Aiche Meeting, 2010: e15434.
[18]  18. Wang Yingying, Lai S K, So C, et al. Mucoadhesive nanoparticles May disrupt the protective human mucus barrier by altering its microstructure. PLoS One, 2011, 6(6): e21547.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133