全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

骨内液体流动生物力学的研究进展

DOI: doi:10.7507/1001-5515.201611024

Keywords: 孔隙结构, 骨小梁, 骨陷窝-骨小管系统, 液体流动, 骨组织细胞

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨重建是以骨形成和骨吸收为特征的重要生理过程,人们早已发现骨组织受到力学载荷作用后,会通过骨重建过程优化其结构以适应变化的载荷环境。目前已有大量研究证实,载荷作用下骨内孔隙结构中的液体会发生流动,所产生的流体剪切力是使骨组织细胞产生生物学响应的主要因素。本文综述了近年来骨内液体流动方面的相关研究进展和成果,主要包括流体刺激下骨组织细胞的生物学响应,骨孔隙中的压力及其对液体流动的影响,以及骨内液体流动的实验、理论及数值模拟研究,并对骨内液体流动研究未来的发展趋势加以分析和展望

References

[1]  1. Wolff J. Das gesetz der transformation der knochen. DMW-Deutsche Medizinische Wochenschrift, 1893, 19(47): 1222-1224.
[2]  2. Ren Li, Yang Pengfei, Wang Zhe, et al. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. J Mech Behav Biomed Mater, 2015, 50: 104-122.
[3]  3. Fehrendt H, Linn T, Hartmann S, et al. Negative influence of a long-term high-fat diet on murine bone architecture. Int J Endocrinol, 2014, 2014: 318924.
[4]  4. Li F F, Chen F L, Wang H, et al. Proteomics based detection of differentially expressed proteins in human osteoblasts subjected to mechanical stress. Biochem Cell Biol, 2013, 91(2): 109-115.
[5]  5. Gong Xiaoyuan, Yang Weidong, Wang Liyun, et al. Prostaglandin E2 modulates F-actin stress fiber in FSS-stimulated MC3T3-E1 cells in a PKA-dependent manner. Acta Biochim Biophys Sin (Shanghai), 2014, 46(1): 40-47.
[6]  6. Cowin S C. Bone poroelasticity. J Biomech, 1999, 32(3): 217-238.
[7]  7. van der Meijden K, Bakker A D, van Essen H W, et al. Mechanical loading and the synthesis of 1, 25(OH)2D in primary human osteoblasts. J Steroid Biochem Mol Biol, 2016, 156: 32-39.
[8]  8. Pathak J L, Bravenboer N, Luyten F P, et al. Mechanical loading reduces inflammation-induced human osteocyte-to-osteoclast communication. Calcif Tissue Int, 2015, 97(2): 169-178.
[9]  9. Lee K L, Guevarra M D, Nguyen A M, et al. The primary cilium functions as a mechanical and calcium signaling nexus. Cilia, 2015, 4: 7.
[10]  10. Roy B, Das T, Mishra D, et al. Oscillatory shear stress induced calcium flickers in osteoblast cells. Integr Biol (Camb), 2014, 6(3): 289-299.
[11]  11. Jing D, Baik A D, Lu X L, et al. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB Journal, 2014, 28(4): 1582-1592.
[12]  12. Xu Huiyun, Guan Ying, Wu Jiawei, et al. Polycystin 2 is involved in the nitric oxide production in responding to oscillating fluid shear in MLO-Y4 cells. J Biomech, 2014, 47(2): 387-391.
[13]  13. Obara C, Tomiyama K I, Takizawa K, et al. Characteristics of three-dimensional prospectively isolated mouse bone marrow mesenchymal stem/stromal cell aggregates on nanoculture plates. Cell Tissue Res, 2016, 366(1): 113-127.
[14]  14. Filipowska J, Reilly G C, Osyczka A M. A single short session of media perfusion induces osteogenesis in hBMSCs cultured in porous scaffolds, dependent on cell differentiation stage. Biotechnol Bioeng, 2016, 113(8): 1814-1824.
[15]  15. Du D, Ushida T, Furukawa K S. Influence of cassette design on three-dimensional perfusion culture of artificial bone. J Biomed Mater Res B Appl Biomater, 2015, 103(1): 84-91.
[16]  16. Clarke S A, Choi S Y, Mckechnie M, et al. Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges. J Mater Sci Mater Med, 2016, 27(2): 22.
[17]  17. Kim J, Bae W G, Choung H W, et al. Multiscale patterned transplantable stem cell patches for bone tissue regeneration. Biomaterials, 2014, 35(33): 9058-9067.
[18]  18. Pan C J, Qin H, Nie Y D, et al. Control of osteoblast cells adhesion and spreading by microcontact printing of extracellular matrix protein patterns. Colloids Surf B Biointerfaces, 2013, 104: 18-26.
[19]  19. Qin Y X, Hu M. Mechanotransduction in musculoskeletal tissue regeneration: effects of fluid flow, loading, and cellular-molecular pathways. Biomed Res Int, 2014, 2014: 863421.
[20]  20. Hu M, Qin Y X. Dynamic fluid flow stimulation on cortical bone and alterations of the gene expressions of osteogenic growth factors and transcription factors in a rat functional disuse model. Arch Biochem Biophys, 2014, 545: 154-161.
[21]  21. Gardinier J, Gangadharan V, Wang L, et al. Hydraulic pressure during fluid flow regulates purinergic signaling and cytoskeleton organization of osteoblasts. Cell Mol Bioeng, 2014, 7(2): 266-277.
[22]  22. Lai X, Price C, Lu X L, et al. Imaging and quantifying solute transport across periosteum: implications for muscle-bone crosstalk. Bone, 2014, 66: 82-89.
[23]  23. Ciani C, Sharma D, Doty S B, et al. Ovariectomy enhances mechanical load-induced solute transport around osteocytes in rat cancellous bone. Bone, 2014, 59: 229-234.
[24]  24. Granke M, Does M D, Nyman J S. The role of water compartments in the material properties of cortical bone. Calcif Tissue Int, 2015, 97(3, SI): 292-307.
[25]  25. Wang L, Wang Y, Han Y, et al. In situ measurement of solute transport in the bone lacunar-canalicular system. Proc Natl Acad Sci U S A, 2005, 102(33): 11911-11916.
[26]  26. Lai X, Price C, Modla S, et al. The dependences of osteocyte network on bone compartment, age, and disease. Bone Res, 2015, 3: 15009.
[27]  27. Cowin S C, Cardoso L. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech, 2015, 48(5, SI): 842-854.
[28]  28. Metzger T A, Kreipke T C, Vaughan T J, et al. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response. J Biomech Eng, 2015, 137(1). doi: 10.1115/1.4028985.
[29]  29. Wang L Y, Fritton S P, Cowin S C, et al. Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment. J Biomech, 1999, 32(7): 663-672.
[30]  30. Benalla M, Palacio-Mancheno P E, Fritton S P, et al. Dynamic permeability of the lacunar-canalicular system in human cortical bone. Biomech Model Mechanobiol, 2014, 13(4): 801-812.
[31]  31. Zhao F, Vaughan T J, Mcnamara L M. Multiscale fluid-structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold. Biomech Model Mechanobiol, 2015, 14(2): 231-243.
[32]  32. Birmingham E, Grogan J A, Niebur G L, et al. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques. Ann Biomed Eng, 2013, 41(4): 814-826.
[33]  33. Fan L, Pei S, Lucas Lu X, et al. A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone. Bone Res, 2016, 4: 16032.
[34]  34. Verbruggen S W, Vaughan T J, Mcnamara L M. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach. Biomech Model Mechanobiol, 2014, 13(1): 85-97.
[35]  35. Vaughan T J, Mullen C A, Verbruggen S W, et al. Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia. Biomech Model Mechanobiol, 2015, 14(4): 703-718.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133