全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

β-catenin 和 IQGAP1 的调控环路及其在肠癌细胞增殖中的作用

DOI: doi:10.7507/1001-5515.201701041

Keywords: β 连环蛋白, 含 IQ 基序的 GTP 激酶活化蛋白 1, 有丝分裂原激活蛋白激酶通路, 细胞增殖

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究 β 连环蛋白(β-catenin)和含 IQ 基序的 GTP 激酶活化蛋白 1(IQGAP1)的相互调控,及其在肠癌细胞增殖中的功能。利用细胞转染技术改变肠癌细胞 SW1116 中的 β-catenin 或者 IQGAP1 表达后,通过蛋白质印迹法分别检测 SW1116 细胞中 IQGAP1 和 β-catenin 的表达情况。利用 CCK-8 细胞增殖实验检测干扰下调 IQGAP1 对 β-catenin 促进 SW1116 细胞增殖的影响。结果发现在 SW1116 细胞中干扰 β-catenin 可以下调 IQGAP1 表达,过表达 β-catenin 可以上调 IQGAP1 并加强有丝分裂原激活蛋白激酶(MAPK)通路;干扰 IQGAP1 在 SW1116 细胞中反而引起 β-catenin 上升;同时 CCK-8 细胞增殖实验发现干扰 IQGAP1 减弱了 β-catenin 的促肠癌细胞增殖作用。本研究表明 β-catenin 与 IQGAP1 形成负向反馈调控环路,在调控肠癌细胞的增殖中发挥着重要功能

References

[1]  1. Chen Wanqing, Zheng Rongshou, Baade P D, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
[2]  2. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell, 2012, 149(6): 1192-1205.
[3]  3. Segditsas S, Tomlinson I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene, 2006, 25(57): 7531-7537.
[4]  4. Abel A M, Schuldt K M, Rajasekaran K, et al. IQGAP1: Insights into the function of a molecular puppeteer. Mol Immunol, 2015, 65(2): 336-349.
[5]  5. Smith J M, Hedman A C, Sacks D B. IQGAPs choreograph cellular signaling from the membrane to the nucleus. Trends Cell Biol, 2015, 25(3): 171-184.
[6]  6. Roy M, Li Zhigang, Sacks D B. IQGAP1 is a scaffold for mitogen-activated protein kinase signaling. Mol Cell Biol, 2005, 25(18): 7940-7952.
[7]  7. McNulty D E, Li Zhigang, White C D, et al. MAPK scaffold IQGAP1 binds the EGF receptor and modulates its activation. J Biol Chem, 2011, 286(17): 15010-15021.
[8]  8. Jameson K L, Mazur P K, Zehnder A M, et al. IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors. Nat Med, 2013, 19(5): 626-630.
[9]  9. Angers S, Moon R T. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol, 2009, 10(7): 468-477.
[10]  10. Valenta T, Hausmann G, Basler K. The many faces and functions of beta-catenin. EMBO J, 2012, 31(12): 2714-2736.
[11]  11. Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol, 2012, 13(12): 767-779.
[12]  12. MacDonald B T, Tamai K, He Xi. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell, 2009, 17(1): 9-26.
[13]  13. Rodriguez-Salas N, Dominguez G, Barderas R, et al. Clinical relevance of colorectal cancer molecular subtypes. Crit Rev Oncol Hematol, 2017, 109: 9-19.
[14]  14. Noritake J, Watanabe T, Sato K, et al. IQGAP1: a key regulator of adhesion and migration. J Cell Sci, 2005, 118(Pt 10): 2085-2092.
[15]  15. Sugimoto N, Imoto I, Fukuda Y, et al. IQGAP1, a negative regulator of cell-cell adhesion, is upregulated by gene amplification at 15q26 in gastric cancer cell lines HSC39 and 40A. J Hum Genet, 2001, 46(1): 21-25.
[16]  16. Fukuda Y, Kurihara N, Imoto I, et al. CD44 is a potential target of amplification within the 11p13 amplicon detected in gastric cancer cell lines. Genes Chromosomes Cancer, 2000, 29(4): 315-324.
[17]  17. Roy M, Li Zhigang, Sacks D B. IQGAP1 binds ERK2 and modulates its activity. J Biol Chem, 2004, 279(17): 17329-17337.
[18]  18. Ren J G, Li Zhigang, Sacks D B. IQGAP1 modulates activation of B-Raf. Proc Natl Acad Sci U S A, 2007, 104(25): 10465-10469.
[19]  19. Matsunaga H, Kubota K, Inoue T, et al. IQGAP1 selectively interacts with K-Ras but not with H-Ras and modulates K-Ras function. Biochem Biophys Res Commun, 2014, 444(3): 360-364.
[20]  20. Amaro A, Chiara S, Pfeffer U. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang. Cancer Metastasis Rev, 2016, 35(1): 63-74.
[21]  21. Bikkavilli R K, Malbon C C. Mitogen-activated protein kinases and Wnt/beta-catenin signaling: Molecular conversations among signaling pathways. Commun Integr Biol, 2009, 2(1): 46-49.
[22]  22. Guturi K K, Mandal T, Chatterjee A, et al. Mechanism of beta-catenin-mediated Transcriptional regulation of epidermal growth factor receptor expression in glycogen synthase kinase 3 beta-inactivated prostate cancer cells. J Biol Chem, 2012, 287(22): 18287-18296.
[23]  23. Latasa M U, Salis F, Urtasun R, et al. Regulation of amphiregulin gene expression by beta-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system. PLoS One, 2012, 7(12): e52711.
[24]  24. Ding Qingqing, Xia Weiya, Liu J C, et al. Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell, 2005, 19(2): 159-170.
[25]  25. Jin Xuewen, Liu Yuling, Liu Jingjing, et al. The overexpression of IQGAP1 and β-catenin is associated with tumor progression in hepatocellular carcinoma in vitro and in vivo. PLoS One, 2015, 10(8): e0133770.
[26]  26. Masuda M, Sawa M, Yamada T. Therapeutic targets in the Wnt signaling pathway: Feasibility of targeting TNIK in colorectal cancer. Pharmacol Ther, 2015, 156: 1-9.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133