全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于离散 S 变换和排列熵的癫痫脑电识别

DOI: doi:10.7507/1001-5515.201702034

Keywords: 脑电图, 癫痫, S 变换, 排列熵

Full-Text   Cite this paper   Add to My Lib

Abstract:

脑电图(EEG)分析对癫痫疾病的诊断具有重要的参考价值,对癫痫脑电信号的自动分类可以及时对患者的情况作出判断,在临床上有很重要的意义。为解决脑电信号采用单一特征识别率不高的问题,同时也为避免小波基函数的选取对分类结果的影响,本文提出了一种基于 S 变换和排列熵(PE)的癫痫脑电信号自动判别方法,首先将原始脑电信号进行离散 S 变换,再对变换后脑电信号各节律的系数分别求其波动指数,并与脑电信号的排列熵值共同组成特征向量送入 Real AdaBoost 分类器进行癫痫各时期的判别。本研究采用德国波恩大学癫痫研究中心数据库,对正常人清醒睁眼,癫痫患者发病间歇期致痫灶内及发作期 3 组脑电信号数据进行方法有效性检验。研究结果表明,各节律的波动指数可有效表征正常、癫痫发作间期和癫痫发作期脑电信号,且多种特征的识别率明显优于单一特征,平均识别率可达到 98.13%,相比于仅提取时频特征或非线性特征,识别率分别提高了 1.2% 和 8.1% 以上,优于文献中报道的多种方法。因此,本方法在癫痫疾病的诊断方面有较好的应用前景

References

[1]  3. Kumar Y, Dewal M L, Anand R S. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal Image and Video Processing, 2014, 8(7): 1323-1334.
[2]  4. 崔刚强, 夏良斌, 梁建峰, 等. 基于小波多尺度分析和极限学习机的癫痫脑电分类算法. 生物医学工程学杂志, 2016, 33(6): 1025-10300.
[3]  5. 庞春颖, 王小甜, 孙晓琳. 一种基于改进经验模态分解的癫痫脑电识别新方法. 中国生物医学工程学报, 2013, 32(6): 663-6690.
[4]  6. Kumar Y, Dewal M L, Anand R S. Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing, 2014, 133(8): 271-279.
[5]  7. Song Yuedong, Crowcroft J, Zhang Jiaxiang. Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J Neurosci Methods, 2012, 210(2): 132-146.
[6]  1. Iasemidis L D. Epileptic seizure prediction and control. IEEE Trans Biomed Eng, 2003, 50(5): 549-558.
[7]  2. übeyli E D. Wavelet/mixture of experts network structure for EEG signals classification. Expert Syst Appl, 2008, 34(3): 1954-1962.0.
[8]  8. Song Jiangling, Hu Wenfeng, Zhang Rui. Automated detection of epileptic EEGs using a novel fusion feature and extreme learning machine. Neurocomputing, 2016, 175(A): 383-391.
[9]  9. Martis R J, Acharya U R, Tan J H, et al. Application of empirical mode decomposition (EMD) for automated detection of epilepsy using EEG signals. Int J Neural Syst, 2012, 22(6): 1250027.
[10]  10. 张涛, 陈万忠, 李明阳. 基于 AdaBoost 算法的癫痫脑电信号识别. 物理学报, 2015, 64(12): 1287010.
[11]  11. Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: The S transform. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001.
[12]  12. Bandt C, Pompe B. Permutation entropy: A natural complexity measure for time series. Phys Rev Lett, 2002, 88(17): 174102.
[13]  13. Schapire R E, Singer Y. Improved boosting algorithms using confidence-rated predictions. Mach Learn, 1999, 37(3): 297-336.
[14]  14. Andrzejak R G, Lehnertz K, Mormann F, et al. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 2001, 64(6, 1): 061907.
[15]  15. Yuan Qi, Zhou Weidong, Liu Yinxia, et al. Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav, 2012, 24(4): 415-421.
[16]  16. 徐永红, 崔洁, 洪文学, 等. 基于改进多元多尺度熵的癫痫脑电信号自动分类. 生物医学工程学杂志, 2015, 32(2): 256-2620.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133