全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于自回归小波包熵特征融合算法的情感识别研究

DOI: doi:10.7507/1001-5515.201610047

Keywords: 情感识别, 脑电信号, 小波包熵, 自回归模型, 核主成分分析, 支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对提高情感识别正确率这一国际开放问题,本文提出了一种基于小波包熵和自回归模型相结合的脑电信号特征提取算法。自回归过程能最大程度逼近脑电信号,用很少的自回归参数提供丰富的谱信息。小波包熵反映脑电信号在各个频带中的谱能量分布情况。将二者结合,能够更好地体现脑电信号的能量特征。本文基于核主成分分析方法,实现了脑电信号特征提取融合。课题组采用情感脑电国际标准数据集(DEAP),选取 6 类情感状态以本文算法进行情感识别。结果显示,本文算法情感识别正确率均在 90% 以上,最高情感识别正确率可达 99.33%。本文的研究结果表明,该算法能够较好地提取脑电信号情感特征,是一种有效的情感特征提取算法

References

[1]  5. Yuen C T, San W S, Rizon M, et al. Classification of human emotions from EEG signals using statistical features and neural network. International Journal of Integrated Engineering, 2009, 1(3): 71-79.
[2]  6. Zhang Yong, Ji Xiaomin, Liu Bo, et al. Combined feature extraction method for classification of EEG signals. Neural Comput & Applic, 2017, 28: 3153-3161.
[3]  7. Pham T D, Tran D, MA W, et al. Neural information processing. Cham: Springer International Publishing, 2015: 95-102.
[4]  8. Hatamikia S, Maghooli K, Nasrabadi A M. The emotion recognition system based on autoregressive model and sequential forward feature selection of electroencephalogram signals. J Med Signals Sens, 2014, 4(3): 194-201.
[5]  9. 程波, 刘光远. 基于表面肌电信号小波包熵的情感识别. 计算机工程与应用, 2008, 44(26): 214-216.
[6]  10. He L, Margaret L, Zhang J, et al. Study of wavelet packet energy entropy for emotion classification in speech and glottal//International Conference on Digital Image Processing. Beijing, China, 2013: 8878.
[7]  11. Murugappan M. Human emotion classification using wavelet transform and KNN//International Conference on Pattern Analysis and Intelligent Robotics, Putrajaya, Malaysia, 2011: 148-153.
[8]  12. Mohammadi Z, Frounchi J, Amiri M. Wavelet-based emotion recognition system using EEG signal. Neural Computing and Applications, 2017, 28(8): 1985-1990.
[9]  13. 杨鹏圆. 基于小波包和 Hilbert-Huang 变换的情感脑电识别研究. 太原: 太原理工大学, 2014.
[10]  14. Koelstra S, Muhl C, Soleymani M, et al. DEAP: A database for emotion analysis using physiological signals. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31.
[11]  15. 赵龙莲, 粱作清, 伍文清, 等. 生物反馈训练后癫痫患者脑电相关维数变化的分析. 中国生物医学工程学报, 2010, 29(1): 71-76.
[12]  16. 李颖洁, 石菁, 朱春妍, 等. 心算任务下脑电信息传输. 上海大学学报:自然科学版, 2007, 13(4): 439-443.
[13]  17. Stoica P, Moses R L. Introduction to spectral analysis. USA: Prentice Hall, 1997.
[14]  18. Farah C, Zied L. Speech emotion recognition in acted and spontaneous context//International Conference on Intelligent Human Computer Interaction. Evry, France, 2014(39): 139-145.
[15]  19. Burrus C S, Gopinath R A, GUO H. Introduction to wavelets and wavelet transforms:a primer. Houston: Prentice Hall Upper Saddle River, 1998.
[16]  20. Military specification: US NAVY, MIL-S-901D, Shock tests high impact shipboard machinery equipment and systems requirement, 1989.
[17]  21. Zhao W F, Qu J F, Chai Y, et al. Proceedings of the 2015 Chinese intelligent systems conference, 2. Berlin, Heidelberg: Springer International Publishing, 2015, 2: 201-207.
[18]  1. 聂聃, 王晓韡, 段若男, 等. 基于脑电的情绪识别研究综述. 中国生物医学工程学报, 2012, 31(4): 595-606.
[19]  2. Petrantonakis P C, Hadjileontiadis L J. EEG-based emotion recognition using hybrid filtering and higher order crossings//3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, Amsterdam, Netherlands, 2009: 1-6.
[20]  3. Khosrowabadi R, Quek H C, Wahab A, et al. EEG-Based emotion recognition using Self-Organizing map for boundary detection//International Conference on Pattern Recognition. Istanbul, Turkey, 2010: 4242-4245.
[21]  4. Hosseini S A, Naghibi-Sistani M B. Emotion recognition method using entropy analysis of EEG signals. International Journal of Image, Graphics and Signal Processing (IJIGSP), 2011, 3(5): 30-36.
[22]  22. 韦振中. 基于核主成分分析的特征提取方法. 广西工学院学报, 2006, 17(4): 27-31.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133